83 research outputs found

    Variations on Negative Stain Electron Microscopy Methods: Tools for Tackling Challenging Systems.

    Get PDF
    Negative stain electron microscopy (EM) allows relatively simple and quick observation of macromolecules and macromolecular complexes through the use of contrast enhancing stain reagent. Although limited in resolution to a maximum of ~18 - 20 Ã…, negative stain EM is useful for a variety of biological problems and also provides a rapid means of assessing samples for cryo-electron microscopy (cryo-EM). The negative stain workflow is straightforward method; the sample is adsorbed onto a substrate, then a stain is applied, blotted, and dried to produce a thin layer of electron dense stain in which the particles are embedded. Individual samples can, however, behave in markedly different ways under varying staining conditions. This has led to the development of a large variety of substrate preparation techniques, negative staining reagents, and grid washing and blotting techniques. Determining the most appropriate technique for each individual sample must be done on a case-by-case basis and a microscopist must have access to a variety of different techniques to achieve the highest-quality negative stain results. Detailed protocols for two different substrate preparation methods and three different blotting techniques are provided, and an example of a sample that shows markedly different results depending on the method used is shown. In addition, the preparation of some common negative staining reagents, and two novel Lanthanide-based stains, is described with discussion regarding the use of each

    Characterization of Amyloid Oligomers by Electrospray Ionization-Ion Mobility Spectrometry-Mass Spectrometry (ESI-IMS-MS)

    Get PDF
    Soluble oligomers formed during the self-assembly of amyloidogenic peptide and protein species are generally thought to be highly toxic. Consequently, thorough characterization of these species is of much interest in the quest for effective therapeutics and for an enhanced understanding of amyloid fibrillation pathways. The structural characterization of oligomeric species, however, is challenging as they are often transiently and lowly populated, and highly heterogeneous. Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is a powerful technique which is able to detect individual ion species populated within a complex heterogeneous mixture and characterize them in terms of shape, stoichiometry, ligand binding capability, and relative stability. Herein, we describe the use of ESI-IMS-MS to characterize the size and shape of oligomers of beta-2-microglobulin through use of data calibration and the derivation of models. This enables information about the range of oligomeric species populated en route to amyloid formation and the mode of oligomer growth to be obtained

    Structure of the protective nematode protease complex H-gal-GP and its conservation across roundworm parasites

    Get PDF
    Roundworm parasite infections are a major cause of human and livestock disease worldwide and a threat to global food security. Disease control currently relies on anthelmintic drugs to which roundworms are becoming increasingly resistant. An alternative approach is control by vaccination and ‘hidden antigens’, components of the worm gut not encountered by the infected host, have been exploited to produce Barbervax, the first commercial vaccine for a gut dwelling nematode of any host. Here we present the structure of H-gal-GP, a hidden antigen from Haemonchus contortus, the Barber’s Pole worm, and a major component of Barbervax. We demonstrate its novel architecture, subunit composition and topology, flexibility and heterogeneity using cryo-electron microscopy, mass spectrometry, and modelling. Importantly, we demonstrate that complexes with the same architecture are present in other Strongylid roundworm parasites including human hookworm. This suggests a common ancestry and the potential for development of a unified hidden antigen vaccine

    Structure of the shutdown state of myosin-2

    Get PDF
    Myosin-2 is essential for processes as diverse as cell division and muscle contraction. Dephosphorylation of its regulatory light chain promotes an inactive, ‘shutdown’ state with the filament-forming tail folded onto the two heads1, which prevents filament formation and inactivates the motors2. The mechanism by which this happens is unclear. Here we report a cryo-electron microscopy structure of shutdown smooth muscle myosin with a resolution of 6 Å in the head region. A pseudo-atomic model, obtained by flexible fitting of crystal structures into the density and molecular dynamics simulations, describes interaction interfaces at the atomic level. The N-terminal extension of one regulatory light chain interacts with the tail, and the other with the partner head, revealing how the regulatory light chains stabilize the shutdown state in different ways and how their phosphorylation would allow myosin activation. Additional interactions between the three segments of the coiled coil, the motor domains and the light chains stabilize the shutdown molecule. The structure of the lever in each head is competent to generate force upon activation. This shutdown structure is relevant to all isoforms of myosin-2 and provides a framework for understanding their disease-causing mutations

    A cryo-EM grid preparation device for time-resolved structural studies

    Get PDF
    Structural biology generally provides static snapshots of protein conformations that can provide information on the functional mechanisms of biological systems. Time-resolved structural biology provides a means to visualize, at near-atomic resolution, the dynamic conformational changes that macromolecules undergo as they function. X-ray free-electron-laser technology has provided a powerful tool to study enzyme mechanisms at atomic resolution, typically in the femtosecond to picosecond timeframe. Complementary to this, recent advances in the resolution obtainable by electron microscopy and the broad range of samples that can be studied make it ideally suited to time-resolved approaches in the microsecond to millisecond timeframe to study large loop and domain motions in biomolecules. Here we describe a cryo-EM grid preparation device that permits rapid mixing, voltage-assisted spraying and vitrification of samples. It is shown that the device produces grids of sufficient ice quality to enable data collection from single grids that results in a sub-4 Å reconstruction. Rapid mixing can be achieved by blot-and-spray or mix-and-spray approaches with a delay of ∼10 ms, providing greater temporal resolution than previously reported mix-and-spray approaches

    Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer

    Get PDF
    BACKGROUND: Tumor classification is inexact and largely dependent on the qualitative pathological examination of the images of the tumor tissue slides. In this study, our aim was to develop an automated computational method to classify Hematoxylin and Eosin (H&E) stained tissue sections based on cancer tissue texture features. METHODS: Image processing of histology slide images was used to detect and identify adipose tissue, extracellular matrix, morphologically distinct cell nuclei types, and the tubular architecture. The texture parameters derived from image analysis were then applied to classify images in a supervised classification scheme using histologic grade of a testing set as guidance. RESULTS: The histologic grade assigned by pathologists to invasive breast carcinoma images strongly correlated with both the presence and extent of cell nuclei with dispersed chromatin and the architecture, specifically the extent of presence of tubular cross sections. The two parameters that differentiated tumor grade found in this study were (1) the number density of cell nuclei with dispersed chromatin and (2) the number density of tubular cross sections identified through image processing as white blobs that were surrounded by a continuous string of cell nuclei. Classification based on subdivisions of a whole slide image containing a high concentration of cancer cell nuclei consistently agreed with the grade classification of the entire slide. CONCLUSION: The automated image analysis and classification presented in this study demonstrate the feasibility of developing clinically relevant classification of histology images based on micro- texture. This method provides pathologists an invaluable quantitative tool for evaluation of the components of the Nottingham system for breast tumor grading and avoid intra-observer variability thus increasing the consistency of the decision-making process

    Structural studies of metal ligand complexes by ion mobility-mass spectrometry

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s12127-013-0122-8Collision cross sections (CCS) have been measured for three salen ligands, and their complexes with copper and zinc using travelling-wave ion mobility-mass spectrometry (TWIMS) and drift tube ion mobility-mass spectrometry (DTIMS), allowing a comparative size evaluation of the ligands and complexes. CCS measurements using TWIMS were determined using peptide and TAAH calibration standards. TWIMS measurements gave significantly larger CCS than DTIMS in helium, by 9 % for TAAH standards and 3 % for peptide standards, indicating that the choice of calibration standards is important in ensuring the accuracy of TWIMS-derived CCS measurements. Repeatability data for TWIMS was obtained for inter- and intra-day studies with mean RSDs of 1. 1 % and 0. 7 %, respectively. The CCS data obtained from IM-MS measurements are compared to CCS values obtained via the projection approximation, the exact hard spheres method and the trajectory method from X-ray coordinates and modelled structures using density functional theory (DFT) based methods. © 2013 Springer-Verlag Berlin Heidelberg

    CD1a-positive infiltrating-dendritic cell density and 5-year survival from human breast cancer

    Get PDF
    © Churchill LivingstoneInfiltrating CD1a+ dendritic cells (DCs) have been associated with increased survival in a number of human cancers. This study investigated DC infiltration within breast cancers and the association with survival. Classical established prognostic factors, of tumour size, lymph node status, histological grade, lympho-vascular invasion, the KI-67 (MIB-1) fraction and the Nottingham Prognostic Index (NPI) were also compared. A total of 48 breast cancer patients were followed from the time of surgery and CD1a density analysis for 5 years or until death. Our data set validated previous studies, which show a relationship between survival and the NPI (P<0.001), tumour size (P<0.01) and lymph node status (P<0.05). Although more patients were alive at the 5-year time point in the group with higher CD1a DC density than the lower CD1a DC group, this failed to reach statistical significance at the P=0.05 level. Analysis at 10 years postsurgery is required to investigate the association further.B.J.Coventry and J. Morto

    Identification of a novel site of interaction between ataxin-3 and the amyloid aggregation inhibitor polyglutamine binding peptide 1

    Get PDF
    Amyloid diseases represent a growing social and economic burden in the developed world. Understanding the assembly pathway and the inhibition of amyloid formation is key to developing therapies to treat these diseases. The neurodegenerative condition Machado–Joseph disease is characterised by the self-aggregation of the protein ataxin-3. Ataxin-3 consists of a globular N-terminal Josephin domain, which can aggregate into curvilinear protofibrils, and an unstructured, dynamically disordered C-terminal domain containing three ubiquitin interacting motifs separated by a polyglutamine stretch. Upon expansion of the polyglutamine region above 50 residues, ataxin-3 undergoes a second stage of aggregation in which long, straight amyloid fibrils form. A peptide inhibitor of polyglutamine aggregation, known as polyQ binding peptide 1, has been shown previously to prevent the maturation of ataxin-3 fibrils. However, the mechanism of this inhibition remains unclear. Using nanoelectrospray ionisation-mass spectrometry, we demonstrate that polyQ binding peptide 1 binds to monomeric ataxin-3. By investigating the ability of polyQ binding peptide 1 to bind to truncated ataxin-3 constructs lacking one or more domains, we localise the site of this interaction to a 39-residue sequence immediately C-terminal to the Josephin domain. The results suggest a new mechanism for the inhibition of polyglutamine aggregation by polyQ binding peptide 1 in which binding to a region outside of the polyglutamine tract can prevent fibril formation, highlighting the importance of polyglutamine flanking regions in controlling aggregation and disease
    • …
    corecore