26 research outputs found

    Occupational and consumer risk estimates for nanoparticles emitted by laser printers

    No full text
    Several studies have reported laser printers as significant sources of nanosized particles (<0.1 μm). Laser printers are used occupationally in office environments and by consumers in their homes. The current work combines existing epidemiological and toxicological evidence on particle-related health effects, measuring doses as mass, particle number and surface area, to estimate and compare the potential risks in occupational and consumer exposure scenarios related to the use of laser printers. The daily uptake of laser printer particles was estimated based on measured particle size distributions and lung deposition modelling. The obtained daily uptakes (particle mass 0.15–0.44 μg d−1; particle number 1.1–3.1 × 109 d−1) were estimated to correspond to 4–13 (mass) or 12–34 (number) deaths per million persons exposed on the basis of epidemiological risk estimates for ambient particles. These risks are higher than the generally used definition of acceptable risk of 1 × 10−6, but substantially lower than the estimated risks due to ambient particles. Toxicological studies on ambient particles revealed consistent values for lowest observed effect levels (LOELs) which were converted into equivalent daily uptakes using allometric scaling. These LOEL uptakes were by a factor of about 330–1,000 (mass) and 1,000–2,500 (particle surface area) higher than estimated uptakes from printers. This toxicological assessment would indicate no significant health risks due to printer particles. Finally, our study suggests that particle number (not mass) and mass (not surface area) are the most conservative risk metrics for the epidemiological and toxicological risks presented here, respectively

    The role of cervical Electrical Impedance Spectroscopy in the prediction of the course and outcome of induced labour

    Get PDF
    BACKGROUND: Previous work by us and others had suggested that cervical electrical impedance spectroscopy (EIS) may be predictive of the outcome of induced labour. We sought to determine which probe configuration of the EIS device is predictive of the outcome of induced labour and compare this to digital assessment by the Bishop score. METHODS: In a prospective cohort of 205 women admitted for induction of labour, we used four probes of diameter 3, 6, 9 and 12 mm connected to an impedance meter to measure cervical resistivity (CR) in Ohm.meters at 14 electrical frequencies and compared their values to digital assessment of the cervix by the Bishop score for the prediction of the outcome of induced labour. We tested the association of labour characteristics and outcomes with CR and Bishop score by stepwise multilinear regression analyses, and the accuracy of prediction of categorical clinical outcomes by analysis of the area under the curves (AUC) of derived Receiver Operator Characteristic (ROC) curves.RESULTS:Of the four CR probe dimensions studied, only the 12 mm probe was predictive of any labour indices. In the frequency range 19 - 156 kHz, CR obtained with this probe was higher in women who delivered by caesarean section (CS) than those who delivered vaginally, and in labours lasting > 24 hrs. Cervical resistivity at 78.1 kHz best predicted vaginal delivery [optimal cut-off 24 hrs [optimal cut-off 2.27 O.m, AUC 0.65 (95% CI 0.58, 0.72), sensitivity 71%, specificity 59%, LR+ 1.72, LR- 0.50, P 12 hours and induction-delivery interval < 24 hrs [optimal cut-off = 4, AUC 0.8 (95% CI 0.75, 0.86), sensitivity 77%, specificity 76%, LR+ 3.3, LR- 0.3, P < 0.05] whilst CR did not. CONCLUSION: Cervical resistivity appears predictive of labour duration and delivery mode following induced labour. However the low predictive values obtained suggest that its current design proffers no immediate clinical utility
    corecore