298 research outputs found

    PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse.

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) is a neuromodulator implicated in anxiety, metabolism and reproductive behavior. PACAP global knockout mice have decreased fertility and PACAP modulates LH release. However, its source and role at the hypothalamic level remain unknown. We demonstrate that PACAP-expressing neurons of the ventral premamillary nucleus of the hypothalamus (PMVPACAP) project to, and make direct contact with, kisspeptin neurons in the arcuate and AVPV/PeN nuclei and a subset of these neurons respond to PACAP exposure. Targeted deletion of PACAP from the PMV through stereotaxic virally mediated cre- injection or genetic cross to LepR-i-cre mice with Adcyap1fl/fl mice led to delayed puberty onset and impaired reproductive function in female, but not male, mice. We propose a new role for PACAP-expressing neurons in the PMV in the relay of nutritional state information to regulate GnRH release by modulating the activity of kisspeptin neurons, thereby regulating reproduction in female mice

    Mammary cancer and epithelial stem cells: a problem or a solution?

    Get PDF
    The existing paradigms for stem cells in adult tissues include the integument, the alimentary canal, the lung, the liver, skeletal muscle and bone marrow. The mammary gland, by contrast, is the 'new kid on the block'. What little is known about stem cells in the mammary gland indicates that they possess a prodigious capacity for self-renewal. More importantly, in rodents, they persist with undiminished reproductive vigor throughout the organism's lifetime without regard to age or reproductive history. Do these stem cells represent primary targets for mammary neoplasia? If so, what are the implications for prevention/therapy

    Organization and Biology of the Porcine Serum Amyloid A (SAA) Gene Cluster: Isoform Specific Responses to Bacterial Infection.

    Get PDF
    Serum amyloid A (SAA) is a prominent acute phase protein. Although its biological functions are debated, the wide species distribution of highly homologous SAA proteins and their uniform behavior in response to injury or inflammation in itself suggests a significant role for this protein. The pig is increasingly being used as a model for the study of inflammatory reactions, yet only little is known about how specific SAA genes are regulated in the pig during acute phase responses and other responses induced by pro-inflammatory host mediators. We designed SAA gene specific primers and quantified the gene expression of porcine SAA1, SAA2, SAA3, and SAA4 by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in liver, spleen, and lung tissue from pigs experimentally infected with the Gram-negative swine specific bacterium Actinobacillus pleuropneumoniae, as well as from pigs experimentally infected with the Gram-positive bacterium Staphylococcus aureus. Our results show that: 1) SAA1 may be a pseudogene in pigs; 2) we were able to detect two previously uncharacterized SAA transcripts, namely SAA2 and SAA4, of which the SAA2 transcript is primarily induced in the liver during acute infection and presumably contributes to circulating SAA in pigs; 3) Porcine SAA3 transcription is induced both hepatically and extrahepatically during acute infection, and may be correlated to local organ affection; 4) Hepatic transcription of SAA4 is markedly induced in pigs infected with A. pleuropneumoniae, but only weakly in pigs infected with S. aureus. These results for the first time establish the infection response patterns of the four porcine SAA genes which will be of importance for the use of the pig as a model for human inflammatory responses, e.g. within sepsis, cancer, and obesity research

    Polymorphisms in the SAA1/2 Gene Are Associated with Carotid Intima Media Thickness in Healthy Han Chinese Subjects: The Cardiovascular Risk Survey

    Get PDF
    BACKGROUND: Serum amyloid A protein (SAA) is not only an inflammatory factor, but also an apolipoprotein that can replace apolipoprotein A1 (apoA1) as the major apolipoprotein of high-density lipoprotein (HDL), which has been linked to atherosclerosis. However, the relationship between genetic polymorphisms of SAA and the intima-media thickness (IMT) of the common carotid artery in healthy subjects remains unclear. We investigated the role of SAA1 and SAA2 gene polymorphisms with IMT in a cohort of healthy subjects participating in the Cardiovascular Risk Survey (CRS) study. METHODOLOGY/PRINCIPAL FINDINGS: Anthropometric and B-mode ultrasound of the carotid IMT were measured in 1914 subjects (849 men; 1065 women) recruited from seven cities in Xinjiang province, (western China). Four SNPs (rs12218, rs2229338, rs1059559, and rs2468844) were genotyped by use of the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The SNP rs12218 was associated with carotid IMT by analyses of a dominate model (P<0.001) and additive model (P = 0.003), and the difference remained significant after multivariate adjustment (P = 0.008, P<0.001, respectively). This relationship was also observed in rs2468844 after multivariate adjustment by recessive model analysis (P = 0.011) but this was not observed in rs2229338 and rs1059559 before and after multivariate adjustment. These associations were not modified by serum HDL concentration. Furthermore, there were significant interactions between rs2468844 and rs12218 (interaction P<0.001) and rs2229338 (interaction P = 0.001) on carotid IMT. CONCLUSION/SIGNIFICANCE: Both rs12218 of the SAA1 gene and rs2468844 of SAA2 gene are associated with carotid IMT in healthy Han Chinese subjects

    An Unexpected Role for the Clock Protein Timeless in Developmental Apoptosis

    Get PDF
    Background: Programmed cell death is critical not only in adult tissue homeostasis but for embryogenesis as well. One of the earliest steps in development, formation of the proamniotic cavity, involves coordinated apoptosis of embryonic cells. Recent work from our group demonstrated that c-Src protein-tyrosine kinase activity triggers differentiation of mouse embryonic stem (mES) cells to primitive ectoderm-like cells. In this report, we identified Timeless (Tim), the mammalian ortholog of a Drosophila circadian rhythm protein, as a binding partner and substrate for c-Src and probed its role in the differentiation of mES cells. Methodology/Principal Findings: To determine whether Tim is involved in ES cell differentiation, Tim protein levels were stably suppressed using shRNA. Tim-defective ES cell lines were then tested for embryoid body (EB) formation, which models early mammalian development. Remarkably, confocal microscopy revealed that EBs formed from the Tim-knockdown ES cells failed to cavitate. Cells retained within the centers of the failed cavities strongly expressed the pluripotency marker Oct4, suggesting that further development is arrested without Tim. Immunoblots revealed reduced basal Caspase activity in the Tim-defective EBs compared to wild-type controls. Furthermore, EBs formed from Tim-knockdown cells demonstrated resistance to staurosporine-induced apoptosis, consistent with a link between Tim and programmed cell death during cavitation. Conclusions/Significance: Our data demonstrate a novel function for the clock protein Tim during a key stage of early development. Specifically, EBs formed from ES cells lacking Tim showed reduced caspase activity and failed to cavitate. As a consequence, further development was halted, and the cells present in the failed cavity remained pluripotent. These findings reveal a new function for Tim in the coordination of ES cell differentiation, and raise the intriguing possibility that circadian rhythms and early development may be intimately linked. © 2011 O'Reilly et al
    • …
    corecore