282 research outputs found

    Contrast sensitivity and visual acuity under low light conditions in macular telangiectasia type 2

    Get PDF
    BACKGROUND/AIM: Macular pigment optical density (MPOD) is centrally depleted early on in macular telangiectasia type 2 (MacTel). Contrast sensitivity (CS) might be related to MPOD, and thus impaired in early MacTel. The effect of low luminance was assessed on both CS and best corrected visual acuity (BCVA). METHODS: This is a cross-sectional study. Pelli-Robson charts were used for CS testing at 1 m in photopic (110 lux) and mesopic (1 lux) conditions. BCVA was tested with ETDRS charts and low luminance visual acuity (LLVA) with a 2.0 log unit neutral density filter. MPOD was obtained with dual-wavelength autofluorescence. RESULTS: One hundred and three eyes of 52 patients with MacTel (mean±SD age 62.9±10.2, range 35-77) were compared with 34 healthy eyes of 17 controls (mean±SD age 65.2±7.4, range 53-78). CS was significantly lower in the eyes with MacTel. This impairment was higher in low light conditions (low light contrast sensitivity (LL-CS)). Eyes at the early stages of MacTel had significantly lower LL-CS than controls, but normal (photopic) CS. The results were similar but less pronounced for BCVA/LLVA. Decrease in CS was correlated with loss of MPOD. CONCLUSIONS: Low light conditions have a detrimental effect on visual performance in MacTel. Impaired CS might correlate with MPOD depletion as a pathognomonic finding in MacTel. Functional impairment might precede structural disintegration, indicating dysfunction at the cellular level. The applied tests might be useful as additional functional assessments in clinical routine and as outcome measures in future interventional clinical trials

    Macular Telangiectasia Type 2: A Classification System Using MultiModal Imaging MacTel Project Report Number 10

    Get PDF
    Purpose: To develop a severity classification for macular telangiectasia type 2 (MacTel) disease using multimodal imaging. Design: An algorithm was used on data from a prospective natural history study of MacTel for classification development. Subjects: A total of 1733 participants enrolled in an international natural history study of MacTel. Methods: The Classification and Regression Trees (CART), a predictive nonparametric algorithm used in machine learning, analyzed the features of the multimodal imaging important for the development of a classification, including reading center gradings of the following digital images: stereoscopic color and red-free fundus photographs, fluorescein angiographic images, fundus autofluorescence images, and spectral-domain (SD)-OCT images. Regression models that used least square method created a decision tree using features of the ocular images into different categories of disease severity. Main Outcome Measures: The primary target of interest for the algorithm development by CART was the change in best-corrected visual acuity (BCVA) at baseline for the right and left eyes. These analyses using the algorithm were repeated for the BCVA obtained at the last study visit of the natural history study for the right and left eyes. Results: The CART analyses demonstrated 3 important features from the multimodal imaging for the classification: OCT hyper-reflectivity, pigment, and ellipsoid zone loss. By combining these 3 features (as absent, present, noncentral involvement, and central involvement of the macula), a 7-step scale was created, ranging from excellent to poor visual acuity. At grade 0, 3 features are not present. At the most severe grade, pigment and exudative neovascularization are present. To further validate the classification, using the Generalized Estimating Equation regression models, analyses for the annual relative risk of progression over a period of 5 years for vision loss and for progression along the scale were performed. Conclusions: This analysis using the data from current imaging modalities in participants followed in the MacTel natural history study informed a classification for MacTel disease severity featuring variables from SD-OCT. This classification is designed to provide better communications to other clinicians, researchers, and patients. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references

    Estimating Retinal Sensitivity Using Optical Coherence Tomography With Deep-Learning Algorithms in Macular Telangiectasia Type 2

    Get PDF
    IMPORTANCE: As currently used, microperimetry is a burdensome clinical testing modality for testing retinal sensitivity requiring long testing times and trained technicians. OBJECTIVE: To create a deep-learning network that could directly estimate function from structure de novo to provide an en face high-resolution map of estimated retinal sensitivity. DESIGN, SETTING, AND PARTICIPANTS: A cross-sectional imaging study using data collected between January 1, 2016, and November 30, 2017, from the Natural History Observation and Registry of macular telangiectasia type 2 (MacTel) evaluated 38 participants with confirmed MacTel from 2 centers. MAIN OUTCOMES AND MEASURES: Mean absolute error of estimated compared with observed retinal sensitivity. Observed retinal sensitivity was obtained with fundus-controlled perimetry (microperimetry). Estimates of retinal sensitivity were made with deep-learning models that learned on superpositions of high-resolution optical coherence tomography (OCT) scans and microperimetry results. Those predictions were used to create high-density en face sensitivity maps of the macula. Training, validation, and test sets were segregated at the patient level. RESULTS: A total of 2499 microperimetry sensitivities were mapped onto 1708 OCT B-scans from 63 eyes of 38 patients (mean [SD] age, 74.3 [9.7] years; 15 men [39.5%]). The numbers of examples for our algorithm were 67 899 (103 053 after data augmentation) for training, 1695 for validation, and 1212 for testing. Mean absolute error results were 4.51 dB (95% CI, 4.36-4.65 dB) when using linear regression and 3.66 dB (95% CI, 3.53-3.78 dB) when using the LeNet model. Using a 49.9 million–variable deep-learning model, a mean absolute error of 3.36 dB (95% CI, 3.25-3.48 dB) of retinal sensitivity for validation and test was achieved. Correlation showed a high degree of agreement (Pearson correlation r = 0.78). By paired Wilcoxon rank sum test, our model significantly outperformed these 2 baseline models (P < .001). CONCLUSIONS AND RELEVANCE: High-resolution en face maps of estimated retinal sensitivities were created in eyes with MacTel. The maps were of unequalled resolution compared with microperimetry and were able to correctly delineate functionally healthy and impaired retina. This model may be useful to monitor structural and functional disease progression and has potential as an objective surrogate outcome measure in investigational trials

    The oxysterol 27-hydroxycholesterol increases β-amyloid and oxidative stress in retinal pigment epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) and age-related macular degeneration (AMD) share several pathological features including β-amyloid (Aβ) peptide accumulation, oxidative damage, and cell death. The causes of AD and AMD are not known but several studies suggest disturbances in cholesterol metabolism as a culprit of these diseases. We have recently shown that the cholesterol oxidation metabolite 27-hydroxycholesterol (27-OHC) causes AD-like pathology in human neuroblastoma SH-SY5Y cells and in organotypic hippocampal slices. However, the extent to which and the mechanisms by which 27-OHC may also cause pathological hallmarks related to AMD are ill-defined. In this study, the effects of 27-OHC on AMD-related pathology were determined in ARPE-19 cells. These cells have structural and functional properties relevant to retinal pigmented epithelial cells, a target in the course of AMD.</p> <p>Methods</p> <p>ARPE-19 cells were treated with 0, 10 or 25 μM 27-OHC for 24 hours. Levels of Aβ peptide, mitochondrial and endoplasmic reticulum (ER) stress markers, Ca<sup>2+ </sup>homeostasis, glutathione depletion, reactive oxygen species (ROS) generation, inflammation and cell death were assessed using ELISA, Western blot, immunocytochemistry, and specific assays.</p> <p>Results</p> <p>27-OHC dose-dependently increased Aβ peptide production, increased levels of ER stress specific markers caspase 12 and gadd153 (also called CHOP), reduced mitochondrial membrane potential, triggered Ca<sup>2+ </sup>dyshomeostasis, increased levels of the nuclear factor κB (NFκB) and heme-oxygenase 1 (HO-1), two proteins activated by oxidative stress. Additionally, 27-OHC caused glutathione depletion, ROS generation, inflammation and apoptotic-mediated cell death.</p> <p>Conclusions</p> <p>The cholesterol metabolite 27-OHC is toxic to RPE cells. The deleterious effects of this oxysterol ranged from Aβ accumulation to oxidative cell damage. Our results suggest that high levels of 27-OHC may represent a common pathogenic factor for both AMD and AD.</p

    Functional Interaction between CFTR and the Sodium-Phosphate Co-Transport Type 2a in Xenopus laevis Oocytes

    Get PDF
    A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF) when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a) functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes.NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi) was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC) had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression.We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in phosphate homeostasis

    Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells

    Get PDF
    ORP5 and ORP8, members of the oxysterol-binding protein (OSBP)-related proteins (ORP) family, are endoplasmic reticulum membrane proteins implicated in lipid trafficking. ORP5 and ORP8 are reported to localize to endoplasmic reticulum-plasma membrane junctions via binding to phosphatidylinositol-4-phosphate (PtdIns(4)P), and act as a PtdIns(4)P/phosphatidylserine counter exchanger between the endoplasmic reticulum and plasma membrane. Here we provide evidence that the pleckstrin homology domain of ORP5/8 via PtdIns(4,5)P 2, and not PtdIns(4)P binding mediates the recruitment of ORP5/8 to endoplasmic reticulum-plasma membrane contact sites. The OSBP-related domain of ORP8 can extract and transport multiple phosphoinositides in vitro, and knocking down both ORP5 and ORP8 in cells increases the plasma membrane level of PtdIns(4,5)P 2 with little effect on PtdIns(4)P. Overall, our data show, for the first time, that phosphoinositides other than PtdIns(4)P can also serve as co-exchangers for the transport of cargo lipids by ORPs.ORP5/8 are endoplasmic reticulum (ER) membrane proteins implicated in lipid trafficking that localize to ER-plasma membrane (PM) contacts and maintain membrane homeostasis. Here the authors show that PtdIns(4,5)P 2 plays a critical role in the targeting and function of ORP5/8 at the PM
    • …
    corecore