1,748 research outputs found

    Beyond the benchtop and the benthos: Dataset management planning and design for time series of ocean carbonate chemistry associated with Durafet (R)-based pH sensors

    Get PDF
    To better understand the impact of ocean acidification on marine ecosystems, an important ongoing research priority for marine scientists is to characterize present-day pH variability. Following recent technological advances, autonomous pH sensor deployments in shallow coastal marine environments have revealed that pH dynamics in coastal oceans are more variable in space and time than the discrete, open-ocean measurements that are used for ocean acidification projections. Data from these types of deployments will benefit the research community by facilitating the improved design of ocean acidification studies as well as the identification or evaluation of natural and human-influenced pH variability. Importantly, the collection of ecologically relevant pH data and a cohesive, user-friendly integration of results across sites and regions requires (1) effective sensor operation to ensure high quality pH data collection and (2) efficient data management for accessibility and broad reuse by the marine science community. Here, we review the best practices for deployment, calibration, and data processing and quality control, using our experience with Durafet (R)-based pH sensors as a model. Next, we describe information management practices for streamlining preservation and distribution of data and for cataloging different types of pH sensor data, developed in collaboration with two U.S. Long Term Ecological Research (LTER) sites. Finally, we assess sensor performance and data recovery from 73 SeaFET deployments in the Santa Barbara Channel using our quality control guidelines and data management tools, and offer recommendations for improved data yields. Our experience provides a template for other groups contemplating using SeaFET technology as well as general steps that may be helpful for the design of data management for other complex sensors. (C) 2016 The Authors. Published by Elsevier B.V

    Directional emission of light from a nano-optical Yagi-Uda antenna

    Full text link
    The plasmon resonance of metal nanoparticles can enhance and direct light from optical emitters in much the same way that radio frequency (RF) antennas enhance and direct the emission from electrical circuits. In the RF regime, a typical antenna design for high directivity is the Yagi-Uda antenna, which basically consists of a one-dimensional array of antenna elements driven by a single feed element. Here, we present the experimental demonstration of directional light emission from a nano-optical Yagi-Uda antenna composed of an array of appropriately tuned gold nanorods. Our results indicate that nano-optical antenna arrays are a simple but efficient tool for the spatial control of light emission.Comment: 4 pages, including 4 figure

    The dolphin proline-rich antimicrobial peptide Tur1A inhibits protein synthesis by targeting the bacterial ribosome

    Get PDF
    Proline-rich antimicrobial peptides (PrAMPs) internalize into susceptible bacteria using specific transporters and interfere with protein synthesis and folding. To date, mammalian PrAMPs have so far only been identified in artiodactyls. Since cetaceans are co-phyletic with artiodactyls, we mined the genome of the bottlenose dolphin Tursiops truncates, leading to the identification of two PrAMPs, Tur1A and Tur1B. Tur1A, which is orthologous to the bovine PrAMP Bac7, is internalized into E. coli without damaging the membranes using the inner membrane transporters SbmA and YjiL/MdM. Furthermore, like Bac7, Tur1A also inhibits bacterial protein synthesis by binding to the ribosome and blocking the transition from the initiation to the elongation phase. By contrast, Tur1B is a poor inhibitor of protein synthesis and may utilize another mechanism of action. An X-ray structure of Tur1A bound within the ribosomal exit tunnel provides a basis to develop these peptides as novel antimicrobial agents

    Inverse spin-s portrait and representation of qudit states by single probability vectors

    Full text link
    Using the tomographic probability representation of qudit states and the inverse spin-portrait method, we suggest a bijective map of the qudit density operator onto a single probability distribution. Within the framework of the approach proposed, any quantum spin-j state is associated with the (2j+1)(4j+1)-dimensional probability vector whose components are labeled by spin projections and points on the sphere. Such a vector has a clear physical meaning and can be relatively easily measured. Quantum states form a convex subset of the 2j(4j+3) simplex, with the boundary being illustrated for qubits (j=1/2) and qutrits (j=1). A relation to the (2j+1)^2- and (2j+1)(2j+2)-dimensional probability vectors is established in terms of spin-s portraits. We also address an auxiliary problem of the optimum reconstruction of qudit states, where the optimality implies a minimum relative error of the density matrix due to the errors in measured probabilities.Comment: 23 pages, 4 figures, PDF LaTeX, submitted to the Journal of Russian Laser Researc

    Minimal stress shielding with a Mallory-Head titanium femoral stem with proximal porous coating in total hip arthroplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As longevity of cementless femoral components enters the third decade, concerns arise with long-term effects of fixation mode on femoral bone morphology. We examined the long-term consequences on femoral remodeling following total hip arthroplasty with a porous plasma-sprayed tapered titanium stem.</p> <p>Methods</p> <p>Clinical data and radiographs were reviewed from a single center for 97 randomly selected cases implanted with the Mallory-Head Porous femoral component during primary total hip arthroplasty. Measurements were taken from preoperative and long-term follow-up radiographs averaging 14 years postoperative. Average changes in the proximal, middle and diaphyseal zones were determined.</p> <p>Results</p> <p>On anteroposterior radiographs, the proximal cortical thickness was unchanged medially and the lateral zone increased 1.3%. Middle cortical thickness increased 4.3% medially and 1.2% laterally. Distal cortical thickness increased 9.6% medially and 1.9% laterally. Using the anteroposterior radiographs, canal fill at 100 mm did not correlate with bony changes at any level (Spearman's rank correlation coefficient of -0.18, 0.05, and 0.00; p value = 0.09, 0.67, 0.97). On lateral radiographs, the proximal cortical thickness increased 1.5% medially and 0.98% laterally. Middle cortical thickness increased 2.4% medially and 1.3% laterally. Distal cortical thickness increased 3.5% medially and 2.1% laterally. From lateral radiographs, canal fill at 100 mm correlated with bony hypertrophy at the proximal, mid-level, and distal femur (Spearman's rank correlation coefficient of 0.85, 0.33, and 0.28, respectively; p value = 0.001, 0.016, and 0.01, respectively).</p> <p>Conclusion</p> <p>Stress shielding is minimized with the Mallory-Head titanium tapered femoral stem with circumferential proximal plasma-sprayed coating in well-fixed and well-functioning total hip arthroplasty. Additionally, the majority of femora demonstrated increased cortical thickness in all zones around the stem prosthesis. Level of Evidence: Therapeutic Level III.</p

    Virtual Reality Applications in Rehabilitation

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-39510-4_1One of the most valuable applications of virtual reality (VR) is in the domain of rehabilitation. After brain injuries or diseases, many patients suffer from impaired physical and/or cognitive capabilities, such as difficulties in moving arms or remembering names. Over the past two decades, VR has been tested and examined as a technology to assist patients’ recovery and rehabilitation, both physical and cognitive. The increasing prevalence of low-cost VR devices brings new opportunities, allowing VR to be used in practice. Using VR devices such as head-mounted displays (HMDs), special virtual scenes can be designed to assist patients in the process of re-training their brain and reorganizing their functions and abilities. However, such VR interfaces and applications must be comprehensively tested and examined for their effectiveness and potential side effects. This paper presents a review of related literature and discusses the new opportunities and challenges. Most of existing studies examined VR as an assessment method rather than a training/exercise method. Nevertheless, promising cases and positive preliminary results have been shown. Considering the increasing need for self-administered, home-based, and personalized rehabilitation, VR rehabilitation is potentially an important approach. This area requires more studies and research effort

    Facial expressions depicting compassionate and critical emotions: the development and validation of a new emotional face stimulus set

    Get PDF
    Attachment with altruistic others requires the ability to appropriately process affiliative and kind facial cues. Yet there is no stimulus set available to investigate such processes. Here, we developed a stimulus set depicting compassionate and critical facial expressions, and validated its effectiveness using well-established visual-probe methodology. In Study 1, 62 participants rated photographs of actors displaying compassionate/kind and critical faces on strength of emotion type. This produced a new stimulus set based on N = 31 actors, whose facial expressions were reliably distinguished as compassionate, critical and neutral. In Study 2, 70 participants completed a visual-probe task measuring attentional orientation to critical and compassionate/kind faces. This revealed that participants lower in self-criticism demonstrated enhanced attention to compassionate/kind faces whereas those higher in self-criticism showed no bias. To sum, the new stimulus set produced interpretable findings using visual-probe methodology and is the first to include higher order, complex positive affect displays

    Poor glycaemic control is associated with reduced exercise performance and oxygen economy during cardio-pulmonary exercise testing in people with type 1 diabetes

    Get PDF
    BackgroundTo explore the impact of glycaemic control (HbA1c) on functional capacity during cardio-pulmonary exercise testing in people with type 1 diabetes.MethodsSixty-four individuals with type 1 diabetes (age: 34 ± 8 years; 13 females, HbA1c: 7.8 ± 1% (62 ± 13 mmol/mol), duration of diabetes: 17 ± 9 years) performed a cardio-pulmonary cycle ergometer exercise test until volitional exhaustion. Stepwise linear regression was used to explore relationships between HbA1c and cardio-respiratory data with p ≤ 0.05. Furthermore, participants were divided into quartiles based on HbA1c levels and cardio-respiratory data were analysed by one-way ANOVA. Multiple regression analysis was performed to explore the relationships between changes in time to exhaustion and cardio-respiratory data. Data were adjusted for confounder.ResultsHbA1c was related to time to exhaustion and oxygen consumption at the power output elicited at the sub-maximal threshold of the heart rate turn point (r = 0.47, R2 = 0.22, p = 0.03). Significant differences were found at time to exhaustion between QI vs. QIV and at oxygen consumption at the power output elicited at the heart rate turn point between QI vs. QII and QI vs. QIV (p < 0.05). Changes in oxygen uptake, power output and in oxygen consumption at the power output elicited at the heart rate turn point and at maximum power output explained 55% of the variance in time to exhaustion (r = 0.74, R2 = 0.55, p < 0.01).ConclusionsPoor glycaemic control is related to less economical use of oxygen at sub-maximal work rates and an earlier time to exhaustion during cardio-pulmonary exercise testing. However, exercise training could have the same potential to counteract the influence of poor glycaemic control on functional capacity

    Regulation of Transgene Expression in Tumor Cells by Exploiting Endogenous Intracellular Signals

    Get PDF
    Recently, we have proposed a novel strategy for a cell-specific gene therapy system based on responses to intracellular signals. In this system, an intracellular signal that is specifically and abnormally activated in the diseased cells is used for the activation of transgene expression. In this study, we used protein kinase C (PKC)α as a trigger to activate transgene expression. We prepared a PKCα-responsive polymer conjugate [PPC(S)] and a negative control conjugate [PPC(A)], in which the phosphorylation site serine (Ser) was replaced with alanine (Ala). The phosphorylation for polymer/DNA complexes was determined with a radiolabel assay using [γ-32P]ATP. PPC(S)/DNA complexes were phosphorylated by the addition of PKCα, but no phosphorylation of the PPC(A)/DNA complex was observed. Moreover, after microinjection of polymer/GFP-encoding DNA complexes into HepG2 cells at cation/anion (C/A) ratios of 0.5 to 2.0, significant expression of GFP was observed in all cases using PPC(S)/DNA complexes, but no GFP expression was observed in the negative control PPC(A)/DNA complex-microinjected cells at C/A ratios of 1.0 and 2.0. On the other hand, GFP expression from PPC(S)/DNA complexes was completely suppressed in cells pretreated with PKCα inhibitor (Ro31-7549). These results suggest that our gene regulation system can be used for tumor cell-specific expression of a transgene in response to PKCα activity
    • …
    corecore