42 research outputs found

    Solitary pulmonary metastasis from prostate sarcomatoid cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary metastasis from prostate cancer is considered to be a late event, and patients can be treated with chemotherapy or hormonal manipulation. However, there has been only a few reports on surgical resection for pulmonary metastasis from prostate cancer.</p> <p>Case Presentation</p> <p>We present a surgical case of solitary pulmonary metastasis from prostate cancer. A 73-year-old man underwent pelvic evisceration for prostate cancer. Histopathological examination revealed a poorly differentiated adenocarcinoma with a sarcomatoid carcinoma component. During postoperative follow-up, chest computed tomography showed a nodular shadow in the lung, and thoracoscopic wedge resection of the lung was performed. Histopathological examination revealed a histological appearance similar to that of the prostate sarcomatoid carcinoma. This is the first reported case of solitary pulmonary metastasis from prostate sarcomatoid cancer.</p> <p>Conclusion</p> <p>Isolated pulmonary metastasis from prostate sarcomatoid cancer is extremely rare, but surgery could be the treatment of choice.</p

    Commentary: the role of cytologic analysis of voided urine in the work-up of asymptomatic microhematuria

    Get PDF
    Microscopic hematuria is a common finding in patients presenting to both primary care doctors as well as urologists. Sources of microscopic hematuria include infection, stones, inflammatory disorders as well as cancer of the genitourinary tract, particularly urothelial cancer. A primary focus in the urologic workup of hematuria is to rule out cancer. This is done using radiographic studies as well as procedures such as cystoscopy and bladder biopsy. As the authors state in their article titled "The utility of serial urinary cytology in the initial evaluation of the patient with microscopic hematuria", cytologic analysis of voided urine, though attractive due to its noninvasive nature, has been found to have the neither the sensitivity, cost-effectiveness, nor the ease of administration necessary to replace more invasive diagnostics in the evaluation of microscopic hematuria

    Integration of aqueous (micellar) two-phase systems on the proteins separation

    Get PDF
    A two-step approach combining an aqueous two-phase system (ATPS) and an aqueous micellar two-phase system (AMTPS), both based on the thermo-responsive copolymer Pluronic L-35, is here proposed for the purification of proteins and tested on the sequential separation of three model proteins, cytochrome c, ovalbumin and azocasein. Phase diagrams were established for the ATPS, as well as co-existence curves for the AMTPS. Then, by scanning and choosing the most promising systems, the separation of the three model proteins was performed. The aqueous systems based on Pluronic L-35 and potassium phosphate buffer (pH = 6.6) proved to be the most selective platform to separate the proteins (SAzo/Cyt = 1667; SOva/Cyt = 5.33 e SAzo/Ova = 1676). The consecutive fractionation of these proteins as well as their isolation from the aqueous phases was proposed, envisaging the industrial application of this downstream strategy. The environmental impact of this downstream process was studied, considering the carbon footprint as the final output. The main contribution to the total carbon footprint comes from the ultrafiltration (~ 49%) and the acid precipitation (~ 33%) due to the energy consumption in the centrifugation. The ATPS step contributes to ~ 17% while the AMTPS only accounts for 0.30% of the total carbon footprint.publishe

    More than 75 percent decline over 27 years in total flying insect biomass in protected areas

    Get PDF
    Global declines in insects have sparked wide interest among scientists, politicians, and the general public. Loss of insect diversity and abundance is expected to provoke cascading effects on food webs and to jeopardize ecosystem services. Our understanding of the extent and underlying causes of this decline is based on the abundance of single species or taxonomic groups only, rather than changes in insect biomass which is more relevant for ecological functioning. Here, we used a standardized protocol to measure total insect biomass using Malaise traps, deployed over 27 years in 63 nature protection areas in Germany (96 unique location-year combinations) to infer on the status and trend of local entomofauna. Our analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study. We show that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline. This yet unrecognized loss of insect biomass must be taken into account in evaluating declines in abundance of species depending on insects as a food source, and ecosystem functioning in the European landscape
    corecore