34 research outputs found

    Prolastin, a pharmaceutical preparation of purified human α1-antitrypsin, blocks endotoxin-mediated cytokine release

    Get PDF
    BACKGROUND: α1-antitrypsin (AAT) serves primarily as an inhibitor of the elastin degrading proteases, neutrophil elastase and proteinase 3. There is ample clinical evidence that inherited severe AAT deficiency predisposes to chronic obstructive pulmonary disease. Augmentation therapy for AAT deficiency has been available for many years, but to date no sufficient data exist to demonstrate its efficacy. There is increasing evidence that AAT is able to exert effects other than protease inhibition. We investigated whether Prolastin, a preparation of purified pooled human AAT used for augmentation therapy, exhibits anti-bacterial effects. METHODS: Human monocytes and neutrophils were isolated from buffy coats or whole peripheral blood by the Ficoll-Hypaque procedure. Cells were stimulated with lipopolysaccharide (LPS) or zymosan, either alone or in combination with Prolastin, native AAT or polymerised AAT for 18 h, and analysed to determine the release of TNFα, IL-1β and IL-8. At 2-week intervals, seven subjects were submitted to a nasal challenge with sterile saline, LPS (25 μg) and LPS-Prolastin combination. The concentration of IL-8 was analysed in nasal lavages performed before, and 2, 6 and 24 h after the challenge. RESULTS: In vitro, Prolastin showed a concentration-dependent (0.5 to 16 mg/ml) inhibition of endotoxin-stimulated TNFα and IL-1β release from monocytes and IL-8 release from neutrophils. At 8 and 16 mg/ml the inhibitory effects of Prolastin appeared to be maximal for neutrophil IL-8 release (5.3-fold, p < 0.001 compared to zymosan treated cells) and monocyte TNFα and IL-1β release (10.7- and 7.3-fold, p < 0.001, respectively, compared to LPS treated cells). Furthermore, Prolastin (2.5 mg per nostril) significantly inhibited nasal IL-8 release in response to pure LPS challenge. CONCLUSION: Our data demonstrate for the first time that Prolastin inhibits bacterial endotoxin-induced pro-inflammatory responses in vitro and in vivo, and provide scientific bases to explore new Prolastin-based therapies for individuals with inherited AAT deficiency, but also for other clinical conditions

    Inhibition of Non-Homologous End Joining Repair Impairs Pancreatic Cancer Growth and Enhances Radiation Response

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is amongst the deadliest of human cancers, due to its late diagnosis as well as its intense resistance to currently available therapeutics. To identify mechanisms as to why PDAC are refractory to DNA damaging cytoxic chemotherapy and radiation, we performed a global interrogation of the DNA damage response of PDAC. We find that PDAC cells generally harbor high levels of spontaneous DNA damage. Inhibition of Non-Homologous End Joining (NHEJ) repair either pharmacologically or by RNAi resulted in a further accumulation of DNA damage, inhibition of growth, and ultimately apoptosis even in the absence of exogenous DNA damaging agents. In response to radiation, PDAC cells rely on the NHEJ pathway to rapidly repair DNA double strand breaks. Mechanistically, when NHEJ is inhibited there is a compensatory increase in Homologous Recombination (HR). Despite this upregulation of HR, DNA damage persists and cells are significantly more sensitive to radiation. Together, these findings support the incorporation of NHEJ inhibition into PDAC therapeutic approaches, either alone, or in combination with DNA damaging therapies such as radiation

    Humanized Mice Recapitulate Key Features of HIV-1 Infection: A Novel Concept Using Long-Acting Anti-Retroviral Drugs for Treating HIV-1

    Get PDF
    BACKGROUND: Humanized mice generate a lymphoid system of human origin subsequent to transplantation of human CD34+ cells and thus are highly susceptible to HIV infection. Here we examined the efficacy of antiretroviral treatment (ART) when added to food pellets, and of long-acting (LA) antiretroviral compounds, either as monotherapy or in combination. These studies shall be inspiring for establishing a gold standard of ART, which is easy to administer and well supported by the mice, and for subsequent studies such as latency. Furthermore, they should disclose whether viral breakthrough and emergence of resistance occurs similar as in HIV-infected patients when ART is insufficient. METHODS/PRINCIPAL FINDINGS: NOD/shi-scid/Îł(c)null (NOG) mice were used in all experimentations. We first performed pharmacokinetic studies of the drugs used, either added to food pellets (AZT, TDF, 3TC, RTV) or in a LA formulation that permitted once weekly subcutaneous administration (TMC278: non-nucleoside reverse transcriptase inhibitor, TMC181: protease inhibitor). A combination of 3TC, TDF and TMC278-LA or 3TC, TDF, TMC278-LA and TMC181-LA suppressed the viral load to undetectable levels in 15/19 (79%) and 14/14 (100%) mice, respectively. In successfully treated mice, subsequent monotherapy with TMC278-LA resulted in viral breakthrough; in contrast, the two LA compounds together prevented viral breakthrough. Resistance mutations matched the mutations most commonly observed in HIV patients failing therapy. Importantly, viral rebound after interruption of ART, presence of HIV DNA in successfully treated mice and in vitro reactivation of early HIV transcripts point to an existing latent HIV reservoir. CONCLUSIONS/SIGNIFICANCE: This report is a unique description of multiple aspects of HIV infection in humanized mice that comprised efficacy testing of various treatment regimens, including LA compounds, resistance mutation analysis as well as viral rebound after treatment interruption. Humanized mice will be highly valuable for exploring the antiviral potency of new compounds or compounds targeting the latent HIV reservoir

    “Pumping iron”—how macrophages handle iron at the systemic, microenvironmental, and cellular levels

    Get PDF

    Pyopneumothorax due to Streptococcus milleri

    No full text
    corecore