182 research outputs found

    Outcomes of COVID-19 related hospitalization among people with HIV in the ISARIC WHO Clinical Characterization Protocol (UK): a prospective observational study

    Get PDF
    BACKGROUND: Evidence is conflicting about how HIV modulates COVID-19. We compared the presentation characteristics and outcomes of adults with and without HIV who were hospitalized with COVID-19 at 207 centers across the United Kingdom and whose data were prospectively captured by the ISARIC WHO CCP study. METHODS: We used Kaplan-Meier methods and Cox regression to describe the association between HIV status and day-28 mortality, after separate adjustment for sex, ethnicity, age, hospital acquisition of COVID-19 (definite hospital acquisition excluded), presentation date, ten individual comorbidities, and disease severity at presentation (as defined by hypoxia or oxygen therapy). RESULTS: Among 47,592 patients, 122 (0.26%) had confirmed HIV infection and 112/122 (91.8%) had a record of antiretroviral therapy. At presentation, HIV-positive people were younger (median 56 versus 74 years; p<0.001) and had fewer comorbidities, more systemic symptoms and higher lymphocyte counts and C-reactive protein levels. The cumulative day-28 mortality was similar in the HIV-positive vs. HIV-negative groups (26.7% vs. 32.1%; p=0.16), but in those under 60 years of age HIV-positive status was associated with increased mortality (21.3% vs. 9.6%; p<0.001 [log-rank test]). Mortality was higher among people with HIV after adjusting for age (adjusted hazard ratio [aHR] 1.47, 95% confidence interval [CI] 1.01-2.14; p=0.05), and the association persisted after adjusting for the other variables (aHR 1.69; 95% CI 1.15-2.48; p=0.008) and when restricting the analysis to people aged <60 years (aHR 2.87; 95% CI 1.70-4.84; p<0.001). CONCLUSIONS: HIV-positive status was associated with an increased risk of day-28 mortality among patients hospitalized for COVID-19

    Obesity, Ethnicity, and Risk of Critical Care, Mechanical Ventilation, and Mortality in Patients Admitted to Hospital with COVID-19: Analysis of the ISARIC CCP-UK Cohort

    Get PDF
    OBJECTIVE: The aim of this study was to investigate the association of obesity with in-hospital coronavirus disease 2019 (COVID-19) outcomes in different ethnic groups. METHODS: Patients admitted to hospital with COVID-19 in the United Kingdom through the Clinical Characterisation Protocol UK (CCP-UK) developed by the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) were included from February 6 to October 12, 2020. Ethnicity was classified as White, South Asian, Black, and other minority ethnic groups. Outcomes were admission to critical care, mechanical ventilation, and in-hospital mortality, adjusted for age, sex, and chronic diseases. RESULTS: Of the participants included, 54,254 (age = 76 years; 45.0% women) were White, 3,728 (57 years; 41.1% women) were South Asian, 2,523 (58 years; 44.9% women) were Black, and 5,427 (61 years; 40.8% women) were other ethnicities. Obesity was associated with all outcomes in all ethnic groups, with associations strongest for black ethnicities. When stratified by ethnicity and obesity status, the odds ratios for admission to critical care, mechanical ventilation, and mortality in black ethnicities with obesity were 3.91 (3.13-4.88), 5.03 (3.94-6.63), and 1.93 (1.49-2.51), respectively, compared with White ethnicities without obesity. CONCLUSIONS: Obesity was associated with an elevated risk of in-hospital COVID-19 outcomes in all ethnic groups, with associations strongest in Black ethnicities

    Impact of cardiometabolic multimorbidity and ethnicity on cardiovascular/renal complications in patients with COVID-19

    Get PDF
    OBJECTIVE: Using a large national database of people hospitalised with COVID-19, we investigated the contribution of cardio-metabolic conditions, multi-morbidity and ethnicity on the risk of in-hospital cardiovascular complications and death. METHODS: A multicentre, prospective cohort study in 302 UK healthcare facilities of adults hospitalised with COVID-19 between 6 February 2020 and 16 March 2021. Logistic models were used to explore associations between baseline patient ethnicity, cardiometabolic conditions and multimorbidity (0, 1, 2, >2 conditions), and in-hospital cardiovascular complications (heart failure, arrhythmia, cardiac ischaemia, cardiac arrest, coagulation complications, stroke), renal injury and death. RESULTS: Of 65 624 patients hospitalised with COVID-19, 44 598 (68.0%) reported at least one cardiometabolic condition on admission. Cardiovascular/renal complications or death occurred in 24 609 (38.0%) patients. Baseline cardiometabolic conditions were independently associated with increased odds of in-hospital complications and this risk increased in the presence of cardiometabolic multimorbidity. For example, compared with having no cardiometabolic conditions, 1, 2 or ≥3 conditions was associated with 1.46 (95% CI 1.39 to 1.54), 2.04 (95% CI 1.93 to 2.15) and 3.10 (95% CI 2.92 to 3.29) times higher odds of any cardiovascular/renal complication, respectively. A similar pattern was observed for all-cause death. Compared with the white group, the South Asian (OR 1.19, 95% CI 1.10 to 1.29) and black (OR 1.53 to 95% CI 1.37 to 1.72) ethnic groups had higher risk of any cardiovascular/renal complication. CONCLUSIONS: In hospitalised patients with COVID-19, cardiovascular complications or death impacts just under half of all patients, with the highest risk in those of South Asian or Black ethnicity and in patients with cardiometabolic multimorbidit

    The correlation between reading and mathematics ability at age twelve has a substantial genetic component

    Get PDF
    Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children’s ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child’s cognitive abilities at age twelve

    Passage and concentration-dependent effects of Indomethacin on tendon derived cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-steroidal anti-inflammatory drugs (NSAID) are commonly used in the treatment of tendinopathies such as tendonitis and tendinosis. Despite this, little is known of their direct actions on tendon-derived cells. As NSAIDs have been shown to delay healing in a number of mesenchymal tissues we have investigated the direct effects of indomethacin on the proliferation of tendon-derived cells.</p> <p>Results and Discussion</p> <p>The results obtained were dependent on both the type of cells used and the method of measurement. When measured using the Alamar blue assay, a common method for the measurement of cell proliferation and viability, no effect of indomethacin was seen regardless of cell source. It is likely that this lack of effect was due to a paucity of mitochondrial enzymes in tendon cells.</p> <p>However, when cell number was assessed using the methylene blue assay, which is a simple nuclear staining technique, an Indomethacin-induced inhibition of proliferation was seen in primary cells but not in secondary subcultures.</p> <p>Conclusion</p> <p>These results suggest that firstly, care must be taken when deciding on methodology used to investigate tendon-derived cells as these cells have a quite different metabolism to other mesenchymal derive cells. Secondly, Indomethacin can inhibit the proliferation of primary tendon derived cells and that secondary subculture selects for a population of cells that is unresponsive to this drug.</p

    Implementation of corticosteroids in treatment of COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK: prospective, cohort study.

    Get PDF
    BACKGROUND: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. METHODS: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. FINDINGS: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70-0·89], p=0·0001, for 70-79 years; 0·52 [0·46-0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75-80% in January, 2021. INTERPRETATION: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. FUNDING: UK National Institute for Health Research and UK Medical Research Council

    FimH Adhesin of Type 1 Fimbriae Is a Potent Inducer of Innate Antimicrobial Responses Which Requires TLR4 and Type 1 Interferon Signalling

    Get PDF
    Components of bacteria have been shown to induce innate antiviral immunity via Toll-like receptors (TLRs). We have recently shown that FimH, the adhesin portion of type 1 fimbria, can induce the innate immune system via TLR4. Here we report that FimH induces potent in vitro and in vivo innate antimicrobial responses. FimH induced an innate antiviral state in murine macrophage and primary MEFs which was correlated with IFN-β production. Moreover, FimH induced the innate antiviral responses in cells from wild type, but not from MyD88−/−, Trif−/−, IFN−α/βR−/− or IRF3−/− mice. Vaginal delivery of FimH, but not LPS, completely protected wild type, but not MyD88−/−, IFN-α/βR−/−, IRF3−/− or TLR4−/− mice from subsequent genital HSV-2 challenge. The FimH-induced innate antiviral immunity correlated with the production of IFN-β, but not IFN-α or IFN-γ. To examine whether FimH plays a role in innate immune induction in the context of a natural infection, the innate immune responses to wild type uropathogenic E. coli (UPEC) and a FimH null mutant were examined in the urinary tract of C57Bl/6 (B6) mice and TLR4-deficient mice. While UPEC expressing FimH induced a robust polymorphonuclear response in B6, but not TLR4−/− mice, mutant bacteria lacking FimH did not. In addition, the presence of TLR4 was essential for innate control of and protection against UPEC. Our results demonstrate that FimH is a potent inducer of innate antimicrobial responses and signals differently, from that of LPS, via TLR4 at mucosal surfaces. Our studies suggest that FimH can potentially be used as an innate microbicide against mucosal pathogens

    Prospective validation of the 4C prognostic models for adults hospitalised with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol

    Get PDF
    Purpose: To prospectively validate two risk scores to predict mortality (4C Mortality) and in-hospital deterioration (4C Deterioration) among adults hospitalised with COVID-19. // Methods: Prospective observational cohort study of adults (age ≥18 years) with confirmed or highly suspected COVID-19 recruited into the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study in 306 hospitals across England, Scotland and Wales. Patients were recruited between 27 August 2020 and 17 February 2021, with at least 4 weeks follow-up before final data extraction. The main outcome measures were discrimination and calibration of models for in-hospital deterioration (defined as any requirement of ventilatory support or critical care, or death) and mortality, incorporating predefined subgroups. // Results: 76 588 participants were included, of whom 27 352 (37.4%) deteriorated and 12 581 (17.4%) died. Both the 4C Mortality (0.78 (0.77 to 0.78)) and 4C Deterioration scores (pooled C-statistic 0.76 (95% CI 0.75 to 0.77)) demonstrated consistent discrimination across all nine National Health Service regions, with similar performance metrics to the original validation cohorts. Calibration remained stable (4C Mortality: pooled slope 1.09, pooled calibration-in-the-large 0.12; 4C Deterioration: 1.00, –0.04), with no need for temporal recalibration during the second UK pandemic wave of hospital admissions. // Conclusion: Both 4C risk stratification models demonstrate consistent performance to predict clinical deterioration and mortality in a large prospective second wave validation cohort of UK patients. Despite recent advances in the treatment and management of adults hospitalised with COVID-19, both scores can continue to inform clinical decision making

    Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study

    Get PDF
    BACKGROUND: Prognostic models to predict the risk of clinical deterioration in acute COVID-19 cases are urgently required to inform clinical management decisions. METHODS: We developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) among consecutively hospitalised adults with highly suspected or confirmed COVID-19 who were prospectively recruited to the International Severe Acute Respiratory and Emerging Infections Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) study across 260 hospitals in England, Scotland, and Wales. Candidate predictors that were specified a priori were considered for inclusion in the model on the basis of previous prognostic scores and emerging literature describing routinely measured biomarkers associated with COVID-19 prognosis. We used internal-external cross-validation to evaluate discrimination, calibration, and clinical utility across eight National Health Service (NHS) regions in the development cohort. We further validated the final model in held-out data from an additional NHS region (London). FINDINGS: 74 944 participants (recruited between Feb 6 and Aug 26, 2020) were included, of whom 31 924 (43·2%) of 73 948 with available outcomes met the composite clinical deterioration outcome. In internal-external cross-validation in the development cohort of 66 705 participants, the selected model (comprising 11 predictors routinely measured at the point of hospital admission) showed consistent discrimination, calibration, and clinical utility across all eight NHS regions. In held-out data from London (n=8239), the model showed a similarly consistent performance (C-statistic 0·77 [95% CI 0·76 to 0·78]; calibration-in-the-large 0·00 [-0·05 to 0·05]); calibration slope 0·96 [0·91 to 1·01]), and greater net benefit than any other reproducible prognostic model. INTERPRETATION: The 4C Deterioration model has strong potential for clinical utility and generalisability to predict clinical deterioration and inform decision making among adults hospitalised with COVID-19. FUNDING: National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, NIHR HPRU in Respiratory Infections at Imperial College London

    Effect of resveratrol on alcohol-induced mortality and liver lesions in mice

    Get PDF
    BACKGROUND: Resveratrol is a polyphenol with important antiinflammatory and antioxidant properties. We investigated the effect of resveratrol on alcohol-induced mortality and liver lesions in mice. METHODS: Mice were randomly distributed into four groups (control, resveratrol-treated control, alcohol and resveratrol-treated alcohol). Chronic alcohol intoxication was induced by progressively administering alcohol in drinking water up to 40% v/v. The mice administered resveratrol received 10 mg/ml in drinking water. The animals had free access to standard diet. Blood levels were determined for transaminases, IL-1 and TNF-α. A histological evaluation was made of liver damage, and survival among the animals was recorded. RESULTS: Transaminase concentration was significantly higher in the alcohol group than in the rest of the groups (p < 0.05). IL-1 levels were significantly reduced in the alcohol plus resveratrol group compared with the alcohol group (p < 0.05). TNF-α was not detected in any group. Histologically, the liver lesions were more severe in the alcohol group, though no significant differences between groups were observed. Mortality in the alcohol group was 78% in the seventh week, versus 22% in the alcohol plus resveratrol group (p < 0.001). All mice in the alcohol group died before the ninth week. CONCLUSION: The results obtained suggest that resveratrol reduces mortality and liver damage in mice
    corecore