70 research outputs found

    Biomechanical predictors of ball velocity during punt kicking in elite rugby league kickers

    Get PDF
    Punt kicking is integral to the attacking and defensive elements of rugby league and the ability to kick the ball with high velocity is desirable. This study aimed to identify important technical aspects of kicking linked to the generation of ball velocity. Maximal punt kicks were obtained from six elite rugby league kickers using a 10-camera motion capture system. Three-dimensional kinematics of the lower extremities was obtained. Regression analysis with ball velocity as criterion was used to identify the kinematic parameters associated with the development of ball velocity. The regression model yielded an adj R2¼0.76, p�0.01. Two parameters were identified: knee extension angular velocity of the kicking limb at impact (R2¼0.50) and peak flexion angular velocity of the kicking hip (R2¼0.26, p�0.01). It is conceivable that players may benefit from exposure to coaching and strength techniques geared toward the modification of kicking mechanics specific to this stud

    Matrix models and sensitivity analysis of populations classified by age and stage : a vec-permutation matrix approach

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Theoretical Ecology 5 (2012): 403-417, doi:10.1007/s12080-011-0132-2.Matrix population models in which individuals are classified by both age and stage can be constructed using the vec-permutation matrix. The resulting age-stage models can be used to derive the age-specific consequences of a stage-specific life history or to describe populations in which the vital rates respond to both age and stage. I derive a general formula for the sensitivity of any output (scalar, vector, or matrix-valued) of the model, to any vector of parameters, using matrix calculus. The matrices describing age-stage dynamics are almost always reducible; I present results giving conditions under which population growth is ergodic from any initial condition. As an example, I analyze a published stage-specific model of Scotch broom (Cytisus scoparius), an invasive perennial shrub. Sensitivity analysis of the population growth rate finds that the selection gradients on adult survival do not always decrease with age but may increase over a range of ages. This may have implications for the evolution of senescence in stage-classified populations. I also derive and analyze the joint distribution of age and stage at death and present a sensitivity analysis of this distribution and of the marginal distribution of age at death.This research was supported by National Science Foundation Grant DEB-0816514 and by a Research Award from the Alexander von Humboldt Foundation

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
    corecore