7,361 research outputs found

    Discrete Redox Signaling Pathways Regulate Photosynthetic Light-Harvesting and Chloroplast Gene Transcription

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection.

    Get PDF
    Phytoplankton and associated microbial communities provide organic carbon to oceanic food webs and drive ecosystem dynamics. However, capturing those dynamics is challenging. Here, an in situ, semi-Lagrangian, robotic sampler profiled pelagic microbes at 4 h intervals over ~2.6 days in North Pacific high-nutrient, low-chlorophyll waters. We report on the community structure and transcriptional dynamics of microbes in an operationally large size class (>5 μm) predominantly populated by dinoflagellates, ciliates, haptophytes, pelagophytes, diatoms, cyanobacteria (chiefly Synechococcus), prasinophytes (chiefly Ostreococcus), fungi, archaea, and proteobacteria. Apart from fungi and archaea, all groups exhibited 24-h periodicity in some transcripts, but larger portions of the transcriptome oscillated in phototrophs. Periodic photosynthesis-related transcripts exhibited a temporal cascade across the morning hours, conserved across diverse phototrophic lineages. Pronounced silica:nitrate drawdown, a high flavodoxin to ferredoxin transcript ratio, and elevated expression of other Fe-stress markers indicated Fe-limitation. Fe-stress markers peaked during a photoperiodically adaptive time window that could modulate phytoplankton response to seasonal Fe-limitation. Remarkably, we observed viruses that infect the majority of abundant taxa, often with total transcriptional activity synchronized with putative hosts. Taken together, these data reveal a microbial plankton community that is shaped by recycled production and tightly controlled by Fe-limitation and viral activity

    Visual responses in the dorsal lateral geniculate nucleus at early stages of retinal degeneration in rd¹ PDE6β mice

    Get PDF
    Inherited retinal degenerations encompass a wide range of diseases that result in the death of rod and cone photoreceptors, eventually leading to irreversible blindness. Low vision survives at early stages of degeneration, at which point it could rely on residual populations of rod/cone photoreceptors as well as the inner retinal photoreceptor, melanopsin. To date, the impact of partial retinal degeneration on visual responses in the primary visual thalamus (dorsal lateral geniculate nucleus, dLGN) remains unknown, as does their relative reliance on surviving rod and cone photoreceptors vs. melanopsin. To answer these questions, we recorded visually evoked responses in the dLGN of anesthetized rd1 mice using in vivo electrophysiology at an age (3–5 wk) at which cones are partially degenerate and rods are absent. We found that excitatory (ON) responses to light had lower amplitude and longer latency in rd1 mice compared with age-matched visually intact controls; however, contrast sensitivity and spatial receptive field size were largely unaffected at this early stage of degeneration. Responses were retained when those wavelengths to which melanopsin is most sensitive were depleted, indicating that they were driven primarily by surviving cones. Inhibitory responses appeared absent in the rd1 thalamus, as did light-evoked gamma oscillations in firing. This description of fundamental features of the dLGN visual response at this intermediate stage of retinal degeneration provides a context for emerging attempts to restore vision by introducing ectopic photoreception to the degenerate retina

    Oligoclonal expansions of CD8(+) T cells in chronic HIV infection are antigen specific

    Get PDF
    Acute HIV infection is associated with a vigorous immune response characterized by the proliferation of selected T cell receptor V beta (BV)-expressing CD8(+) T cells. These 'expansions', which are commonly detected in the peripheral blood, can persist during chronic HIV infection and may result in the dominance of particular clones. Such clonal populations are most consistent with antigen-driven expansions of CD8(+) T cells. However, due to the difficulties in studying antigen-specific T cells in vivo, it has been hard to prove that oligoclonal BV expansions are actually HIV specific. The use of tetrameric major histocompatibility complex-peptide complexes has recently enabled direct visualization of antigen-specific T cells ex vivo but has not provided information on their clonal composition. We have now made use of these tetrameric complexes in conjunction with anti-BV chain-specific monoclonal antibodies and analysis of cytotoxic T lymphocyte lines/clones to show that chronically clonally expanded CD8(+) T cells are HIV specific in vivo

    Social Disinhibition: Piloting a New Clinical Measure in Individuals with Traumatic Brain Injury

    Get PDF
    Social disinhibition difficulties are common following traumatic brain injury (TBI). However, clinically sensitive tools to objectively assess the difficulties are lacking. This study aimed to pilot a new clinical measure of social disinhibition, the social disinhibition task (SDT). Whether social disinhibition is dependent on the type of social information judgements required and whether disinhibited responses can be adjusted with additional guidance were also examined. Participants were 31 adults (25 Male) with moderate-to-severe TBI and 22 adult (17 Male) healthy control participants. Participants viewed scenes of complex social situations and were asked to describe a character in them (Part A), describe a character while inhibiting inappropriate or negative responses (Part B), and describe a character while not only inhibiting negative responses, but also providing positive responses (Part C). One-half of the items contained a faux pas requiring participants to make inferences about a character's mental state. TBI and control participants responded similarly to Part A, although control participants responded less positively than TBI participants in the faux pas items. TBI participants were significantly impaired on Part B indicating they experienced difficulties in inhibiting automatic responding. TBI participants were however able to adjust their responding in Part C so that they respond similarly to the control participants. Between group differences were not detected in reaction time. Overall, the SDT appears to be suitable to detect social inhibition difficulties in clinical settings and provides a new direction for remediation of the difficulties in individuals with TBI

    Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy.

    Get PDF
    Transgenic mice were generated by using the alpha-myosin heavy chain promoter coupled to the coding sequence of a constitutively active mutant alpha 1B-adrenergic receptor (AR). These transgenic animals demonstrated cardiac-specific expression of this alpha 1-AR with resultant activation of phospholipase C as shown by increased myocardial diacylglycerol content. A phenotype consistent with cardiac hypertrophy developed in adult transgenic mice with increased heart/body weight ratios, myocyte cross-sectional areas, and ventricular atrial natriuretic factor mRNA levels relative to nontransgenic controls. These transgenic animals may provide insight into the biochemical triggers that induce hypertrophy in cardiac disease and serve as a convenient experimental model for studies of this condition

    Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    Get PDF
    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils
    corecore