249 research outputs found

    A novel application of capnography during controlled human exposure to air pollution

    Get PDF
    BACKGROUND: The objective was to determine the repeatability and stability of capnography interfaced with human exposure facility. METHODS: Capnographic wave signals were obtained from five healthy volunteers exposed to particle-free, filtered air during two consecutive 5 min intervals, 10 min apart, within the open and then the sealed and operational human exposure facility (HEF). Using a customized setup comprised of the Oridion Microcap(® )portable capnograph, DA converter and AD card, the signal was acquired and saved as an ASCII file for subsequent processing. The minute ventilation (VE), respiratory rate (RR) and expiratory tidal volume (V(TE)) were recorded before and after capnographic recording and then averaged. Each capnographic tracing was analyzed for acceptable waves. From each recorded interval, 8 to 19 acceptable waves were selected and measured. The following wave parameters were obtained: total length and length of phase II and III, slope of phase II and III, area under the curve and area under phase III. In addition, we recorded signal measures including the mean, standard deviation, mode, minimum, maximum – which equals end-tidal CO(2 )(EtCO(2)), zero-corrected maximum and true RMS. RESULTS: Statistical analysis using a paired t-test for means showed no statistically significant changes of any wave parameters and wave signal measures, corrected for RR and V(TE), comparing the measures when the HEF was open vs. sealed and operational. The coefficients of variation of the zero-corrected and uncorrected EtCO(2), phase II absolute difference, signal mean, standard deviation and RMS were less than 10% despite a sub-atmospheric barometric pressure, and slightly higher temperature and relative humidity within the HEF when operational. CONCLUSION: We showed that a customized setup for the acquisition and processing of the capnographic wave signal, interfaced with HEF was stable and repeatable. Thus, we expect that analysis of capnographic waves in controlled human air pollution exposure studies is a feasible tool for characterization of cardio-pulmonary effects of such exposures

    Effects of Particulate Air Pollution on Cardiovascular Health: A Population Health Risk Assessment

    Get PDF
    Particulate matter (PM) air pollution is increasingly recognized as an important and modifiable risk factor for adverse health outcomes including cardiovascular disease (CVD). However, there are still gaps regarding large population risk assessment. Results from the nationwide Behavioral Risk Factor Surveillance System (BRFSS) were used along with air quality monitoring measurements to implement a systematic evaluation of PM-related CVD risks at the national and regional scales. CVD status and individual-level risk factors were collected from more than 500,000 BRFSS respondents across 2,231 contiguous U.S. counties for 2007 and 2009. Chronic exposures to PM pollutants were estimated with spatial modeling from measurement data. CVD outcomes attributable to PM pollutants were assessed by mixed-effects logistic regression and latent class regression (LCR), with adjustment for multicausality. There were positive associations between CVD and PM after accounting for competing risk factors: the multivariable-adjusted odds for the multiplicity of CVD outcomes increased by 1.32 (95% confidence interval: 1.23–1.43) and 1.15 (1.07–1.22) times per 10 µg/m3 increase in PM2.5 and PM10 respectively in the LCR analyses. After controlling for spatial confounding, there were moderate estimated effects of PM exposure on multiple cardiovascular manifestations. These results suggest that chronic exposures to ambient particulates are important environmental risk factors for cardiovascular morbidity

    Controlled human exposures to ambient pollutant particles in susceptible populations

    Get PDF
    Epidemiologic studies have established an association between exposures to air pollution particles and human mortality and morbidity at concentrations of particles currently found in major metropolitan areas. The adverse effects of pollution particles are most prominent in susceptible subjects, including the elderly and patients with cardiopulmonary diseases. Controlled human exposure studies have been used to confirm the causal relationship between pollution particle exposure and adverse health effects. Earlier studies enrolled mostly young healthy subjects and have largely confirmed the capability of particles to cause adverse health effects shown in epidemiological studies. In the last few years, more studies involving susceptible populations have been published. These recent studies in susceptible populations, however, have shown that the adverse responses to particles appear diminished in these susceptible subjects compared to those in healthy subjects. The present paper reviewed and compared control human exposure studies to particles and sought to explain the "unexpected" response to particle exposure in these susceptible populations and make recommendations for future studies. We found that the causes for the discrepant results are likely multifactorial. Factors such as medications, the disease itself, genetic susceptibility, subject selection bias that is intrinsic to many controlled exposure studies and nonspecificity of study endpoints may explain part of the results. Future controlled exposure studies should select endpoints that are more closely related to the pathogenesis of the disease and reflect the severity of particle-induced health effects in the specific populations under investigation. Future studies should also attempt to control for medications and genetic susceptibility. Using a different study design, such as exposing subjects to filtered air and ambient levels of particles, and assessing the improvement in biological endpoints during filtered air exposure, may allow the inclusion of higher risk patients who are likely the main contributors to the increased particle-induced health effects in epidemiological studies

    Particulate air pollution and survival in a COPD cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown cross-sectional associations between long term exposure to particulate air pollution and survival in general population or convenience cohorts. Less is known about susceptibility, or year to year changes in exposure. We investigated whether particles were associated with survival in a cohort of persons with COPD in 34 US cities, eliminating the usual cross-sectional exposure and treating PM<sub>10 </sub>as a within city time varying exposure.</p> <p>Methods</p> <p>Using hospital discharge data, we constructed a cohort of persons discharged alive with chronic obstructive pulmonary disease using Medicare data between 1985 and 1999. 12-month averages of PM<sub>10 </sub>were merged to the individual annual follow up in each city. We applied Cox's proportional hazard regression model in each city, with adjustment for individual risk factors.</p> <p>Results</p> <p>We found significant associations in the survival analyses for single year and multiple lag exposures, with a hazard ratio for mortality for an increase of 10 μg/m<sup>3 </sup>PM<sub>10 </sub>over the previous 4 years of 1.22 (95% CI: 1.17–1.27).</p> <p>Conclusion</p> <p>Persons discharged alive for COPD have substantial mortality risks associated with exposure to particles. The risk is evident for exposure in the previous year, and higher in a 4 year distributed lag model. These risks are significantly greater than seen in time series analyses.</p

    Efficiency of two-phase methods with focus on a planned population-based case-control study on air pollution and stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We plan to conduct a case-control study to investigate whether exposure to nitrogen dioxide (NO<sub>2</sub>) increases the risk of stroke. In case-control studies, selective participation can lead to bias and loss of efficiency. A two-phase design can reduce bias and improve efficiency by combining information on the non-participating subjects with information from the participating subjects. In our planned study, we will have access to individual disease status and data on NO<sub>2 </sub>exposure on group (area) level for a large population sample of Scania, southern Sweden. A smaller sub-sample will be selected to the second phase for individual-level assessment on exposure and covariables. In this paper, we simulate a case-control study based on our planned study. We develop a two-phase method for this study and compare the performance of our method with the performance of other two-phase methods.</p> <p>Methods</p> <p>A two-phase case-control study was simulated with a varying number of first- and second-phase subjects. Estimation methods: <it>Method 1</it>: Effect estimation with second-phase data only. <it>Method 2</it>: Effect estimation by adjusting the first-phase estimate with the difference between the adjusted and unadjusted second-phase estimate. The first-phase estimate is based on individual disease status and residential address for all study subjects that are linked to register data on NO<sub>2</sub>-exposure for each geographical area. <it>Method 3</it>: Effect estimation by using the expectation-maximization (EM) algorithm without taking area-level register data on exposure into account. <it>Method 4</it>: Effect estimation by using the EM algorithm and incorporating group-level register data on NO<sub>2</sub>-exposure.</p> <p>Results</p> <p>The simulated scenarios were such that, unbiased or marginally biased (< 7%) odds ratio (OR) estimates were obtained with all methods. The efficiencies of method 4, are generally higher than those of methods 1 and 2. The standard errors in method 4 decreased further when the case/control ratio is above one in the second phase. For all methods, the standard errors do not become substantially reduced when the number of first-phase controls is increased.</p> <p>Conclusion</p> <p>In the setting described here, method 4 had the best performance in order to improve efficiency, while adjusting for varying participation rates across areas.</p

    The air quality impacts of road closures associated with the 2004 Democratic National Convention in Boston

    Get PDF
    BACKGROUND: The Democratic National Convention (DNC) in Boston, Massachusetts in 2004 provided an opportunity to evaluate the impacts of a localized and short-term but potentially significant change in traffic patterns on air quality, and to determine the optimal monitoring approach to address events of this nature. It was anticipated that the road closures associated with the DNC would both influence the overall air pollution level and the distribution of concentrations across the city, through shifts in traffic patterns. METHODS: To capture these effects, we placed passive nitrogen dioxide badges at 40 sites around metropolitan Boston before, during, and after the DNC, with the goal of capturing the array of hypothesized impacts. In addition, we continuously measured elemental carbon at three sites, and gathered continuous air pollution data from US EPA fixed-site monitors and traffic count data from the Massachusetts Highway Department. RESULTS: There were significant reductions in traffic volume on the highway with closures north of Boston, with relatively little change along other highways, indicating a more isolated traffic reduction rather than an across-the-board decrease. For our nitrogen dioxide samples, while there was a relatively small change in mean concentrations, there was significant heterogeneity across sites, which corresponded with our a priori classifications of road segments. The median ratio of nitrogen dioxide concentrations during the DNC relative to non-DNC sampling periods was 0.58 at sites with hypothesized traffic reductions, versus 0.88 for sites with no changes hypothesized and 1.15 for sites with hypothesized traffic increases. Continuous monitors measured slightly lower concentrations of elemental carbon and nitrogen dioxide during road closure periods at monitors proximate to closed highway segments, but not for PM(2.5 )or further from major highways. CONCLUSION: We conclude that there was a small but measurable influence of DNC-related road closures on air quality patterns in the Boston area, and that a low-cost monitoring study combining passive badges for spatial heterogeneity and continuous monitors for temporal heterogeneity can provide useful insight for community air quality assessments

    Reductions in cardiovascular, cerebrovascular, and respiratory mortality following the national Irish smoking ban: Interrupted time-series analysis

    Get PDF
    Copyright @ 2013 Stallings-Smith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Previous studies have shown decreases in cardiovascular mortality following the implementation of comprehensive smoking bans. It is not known whether cerebrovascular or respiratory mortality decreases post-ban. On March 29, 2004, the Republic of Ireland became the first country in the world to implement a national workplace smoking ban. The aim of this study was to assess the effect of this policy on all-cause and cause-specific, non-trauma mortality. Methods: A time-series epidemiologic assessment was conducted, utilizing Poisson regression to examine weekly age and gender-standardized rates for 215,878 non-trauma deaths in the Irish population, ages ≥35 years. The study period was from January 1, 2000, to December 31, 2007, with a post-ban follow-up of 3.75 years. All models were adjusted for time trend, season, influenza, and smoking prevalence. Results: Following ban implementation, an immediate 13% decrease in all-cause mortality (RR: 0.87; 95% CI: 0.76-0.99), a 26% reduction in ischemic heart disease (IHD) (RR: 0.74; 95% CI: 0.63-0.88), a 32% reduction in stroke (RR: 0.68; 95% CI: 0.54-0.85), and a 38% reduction in chronic obstructive pulmonary disease (COPD) (RR: 0.62; 95% CI: 0.46-0.83) mortality was observed. Post-ban reductions in IHD, stroke, and COPD mortalities were seen in ages ≥65 years, but not in ages 35-64 years. COPD mortality reductions were found only in females (RR: 0.47; 95% CI: 0.32-0.70). Post-ban annual trend reductions were not detected for any smoking-related causes of death. Unadjusted estimates indicate that 3,726 (95% CI: 2,305-4,629) smoking-related deaths were likely prevented post-ban. Mortality decreases were primarily due to reductions in passive smoking. Conclusions: The national Irish smoking ban was associated with immediate reductions in early mortality. Importantly, post-ban risk differences did not change with a longer follow-up period. This study corroborates previous evidence for cardiovascular causes, and is the first to demonstrate reductions in cerebrovascular and respiratory causes
    • …
    corecore