193 research outputs found

    Semiconductor-metal core-shell plasmonic nanolasers with a bowtie antenna cross section

    Get PDF
    A new plasmonic bowtie nanolaser structure is fabricated where a semiconductor gain core is enclosed by a metal shell with bowtie cross section built-in. Light emission characteristics under electrical injection will be reported

    The upper limit of the e+e- partial width of X(3872)

    Full text link
    The e+e- decay partial width of the recently observed state, X(3872), is estimated using the ISR data collected at the center of mass energy 4.03 GeV in e+e- annihilation experiment by BES at BEPC. It is found that the product of the e+e- partial width and X(3872) --> pi+ pi- J/psi decay branching fraction is less than 10 eV at 90 % confidence level if the J(PC) of X(3872) is 1(--). Together with the potential models and other information, we conclude that X(3872) is very unlikely to be a vector state.Comment: 5 pages, 1 figur

    Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection

    Get PDF
    Plasmonic nanolasers and spasers continue to attract a great deal of interest from the physics and nanophotonics community, with the experimental observation of lasing as a focus of research. We report the observation of continuous wave lasing in metallic cavities of deep subwavelength sizes under electrical injection, operating at room temperature. The volume of the nanolaser is as small as 0.42¿3, where ¿ = 1.55 µm is the lasing wavelength. This demonstration will help answer the question of how small a nanolaser can be made, and will likely stimulate a wide range of fundamental studies in basic laser physics and quantum optics on truly subwavelength scales. In addition, such nanolasers may lead to many potential applications, such as on-chip integrated photonic systems for communication, computing, and detection

    Macrophage mal1 deficiency suppresses atherosclerosis in low-density lipoprotein receptor-null mice by activating peroxisome proliferator-activated receptor-γ-regulated genes

    Get PDF
    Objective- The adipocyte/macrophage fatty acid-binding proteins aP2 (FABP4) and Mal1 (FABP5) are intracellular lipid chaperones that modulate systemic glucose metabolism, insulin sensitivity, and atherosclerosis. Combined deficiency of aP2 and Mal1 has been shown to reduce the development of atherosclerosis, but the independent role of macrophage Mal1 expression in atherogenesis remains unclear. Methods and Results- We transplanted wild-type (WT), Mal1, or aP2 bone marrow into low-density lipoprotein receptor-null (LDLR) mice and fed them a Western diet for 8 weeks. Mal1→LDLR mice had significantly reduced (36%) atherosclerosis in the proximal aorta compared with control WT→LDLR mice. Interestingly, peritoneal macrophages isolated from Mal1-deficient mice displayed increased peroxisome proliferator-activated receptor-γ (PPARγ) activity and upregulation of a PPARγ-related cholesterol trafficking gene, CD36. Mal1 macrophages showed suppression of inflammatory genes, such as COX2 and interleukin 6. Mal1→LDLR mice had significantly decreased macrophage numbers in the aortic atherosclerotic lesions compared with WT→LDLR mice, suggesting that monocyte recruitment may be impaired. Indeed, blood monocytes isolated from Mal1→LDLR mice on a high-fat diet had decreased CC chemokine receptor 2 gene and protein expression levels compared with WT monocytes. Conclusion- Taken together, our results demonstrate that Mal1 plays a proatherogenic role by suppressing PPARγ activity, which increases expression of CC chemokine receptor 2 by monocytes, promoting their recruitment to atherosclerotic lesions. © 2011 American Heart Association, Inc

    The molecular systems composed of the charmed mesons in the HSˉ+h.c.H\bar{S}+h.c. doublet

    Full text link
    We study the possible heavy molecular states composed of a pair of charm mesons in the H and S doublets. Since the P-wave charm-strange mesons Ds0(2317)D_{s0}(2317) and Ds1(2460)D_{s1}(2460) are extremely narrow, the future experimental observation of the possible heavy molecular states composed of Ds/Ds∗D_s/D_s^\ast and Ds0(2317)/Ds1(2460)D_{s0}(2317)/D_{s1}(2460) may be feasible if they really exist. Especially the possible JPC=1−−J^{PC}=1^{--} states may be searched for via the initial state radiation technique.Comment: 42 pages, 4 tables, 31 figures. Improved numerical results and Corrected typos

    Analysis of the radiative decays among the charmonium states

    Full text link
    In this article, we study the radiative decays among the charmonium states with the heavy quark effective theory, and make predictions for the ratios among the radiative decay widths of an special multiplet to another multiplet. The predictions can be confronted with the experimental data in the future and put additional constraints in identifying the XX, YY, ZZ charmonium-like mesons.Comment: 12 pages, revised revisio

    Partial Wave Analysis of J/ψ→γ(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψ→γ(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The K∗Kˉ∗K^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0−+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width ∼500\sim 500 MeV. There is further evidence for a 2−+2^{-+} component peaking at 2.55 GeV. The non-K∗Kˉ∗K^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from K∗K∗ˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL
    • …
    corecore