168 research outputs found
Baryon Decuplet to Octet Electromagnetic Transitions in Quenched and Partially Quenched Chiral Perturbation Theory
We calculate baryon decuplet to octet electromagnetic transition form factors
in quenched and partially quenched chiral perturbation theory. We work in the
isospin limit of SU(3) flavor, up to next-to-leading order in the chiral
expansion, and to leading order in the heavy baryon expansion. Our results are
necessary for proper extrapolation of lattice calculations of these
transitions. We also derive expressions for the case of SU(2) flavor away from
the isospin limit.Comment: 16 pages, 3 figures, revtex
Two-Body Cabibbo-Suppressed Charmed Meson Decays
Singly-Cabibbo-suppressed decays of charmed particles governed by the quark
subprocesses and are analyzed using a
flavor-topology approach, based on a previous analysis of the Cabibbo-favored
decays governed by . Decays to and , where is a
pseudoscalar meson and is a vector meson, are considered. We include
processes in which and are produced.Comment: 18 pages, latex, 2 figures, to be submitted to Phys. Rev.
Charmless Two-body Baryonic B Decays
We study charmless two-body baryonic B decays in a diagramatic approach.
Relations on decay amplitudes are obtained. In general there are more than one
tree and more than one penguin amplitudes. The number of independent amplitudes
can be reduced in the large m_B limit. It leads to more predictive results.
Some prominent modes for experimental searches are pointed out.Comment: 15 pages, 2 figures. To appear in Phys. Rev.
Hadronic Electromagnetic Properties at Finite Lattice Spacing
Electromagnetic properties of the octet mesons as well as the octet and
decuplet baryons are augmented in quenched and partially quenched chiral
perturbation theory to include O(a) corrections due to lattice discretization.
We present the results for the SU(3) flavor group in the isospin limit as well
as the results for SU(2) flavor with non-degenerate quarks. These corrections
will be useful for extrapolation of lattice calculations using Wilson valence
and sea quarks, as well as calculations using Wilson sea quarks and
Ginsparg-Wilson valence quarks.Comment: 19 pages, 0 figures, RevTeX
Chiral Analysis of Quenched Baryon Masses
We extend to quenched QCD an earlier investigation of the chiral structure of
the masses of the nucleon and the delta in lattice simulations of full QCD.
Even after including the meson-loop self-energies which give rise to the
leading and next-to-leading non-analytic behaviour (and hence the most rapid
variation in the region of light quark mass), we find surprisingly little
curvature in the quenched case. Replacing these meson-loop self-energies by the
corresponding terms in full QCD yields a remarkable level of agreement with the
results of the full QCD simulations. This comparison leads to a very good
understanding of the origins of the mass splitting between these baryons.Comment: 23 pages, 6 figure
Charmless decays using flavor SU(3) symmetry
The decays of mesons to a pair of charmless pseudoscalar () mesons are
analyzed within a framework of flavor SU(3). Symmetry breaking is taken into
account in tree () amplitudes through ratios of decay constants; exact SU(3)
is assumed elsewhere. Acceptable fits to and
branching ratios and CP asymmetries are obtained with tree, color-suppressed
(), penguin (), and electroweak penguin () amplitudes. Crucial
additional terms for describing processes involving and include
a large flavor-singlet penguin amplitude () as proposed earlier and a
penguin amplitude associated with intermediate and quarks. For
the mode a term associated with intermediate
and quarks also may be needed. Values of the weak phase are
obtained consistent with an earlier analysis of decays, where
denotes a vector meson, and with other analyses of CKM parameters.Comment: 26 pages, 1 figure. To be submitted to Phys. Rev. D. Reference
update
Nucleons Properties at Finite Lattice Spacing in Chiral Perturbation Theory
Properties of the proton and neutron are studied in partially-quenched chiral
perturbation theory at finite lattice spacing. Masses, magnetic moments, the
matrix elements of isovector twist-2 operators and axial-vector currents are
examined at the one-loop level in a double expansion in the light-quark masses
and the lattice spacing. This work will be useful in extrapolating the results
of simulations using Wilson valence and sea quarks, as well as simulations
using Wilson sea quarks and Ginsparg-Wilson valence quarks, to the continuum.Comment: 16 pages LaTe
B-->pi and B-->K transitions in standard and quenched chiral perturbation theory
We study the effects of chiral logs on the heavy-->light pseudoscalar meson
transition form factors by using standard and quenched chiral perturbation
theory combined with the static heavy quark limit. The resulting expressions
are used to indicate the size of uncertainties due to the use of the quenched
approximation in the current lattice studies. They may also be used to assess
the size of systematic uncertainties induced by missing chiral log terms in
extrapolating toward the physical pion mass. We also provide the coefficient
multiplying the quenched chiral log, which may be useful if the quenched
lattice studies are performed with very light mesons.Comment: 33 pages, 8 PostScript figures, version to appear in PR
Dark Matter Direct Detection Signals inferred from a Cosmological N-body Simulation with Baryons
We extract at redshift z=0 a Milky Way sized object including gas, stars and
dark matter (DM) from a recent, high-resolution cosmological N-body simulation
with baryons. Its resolution is sufficient to witness the formation of a
rotating disk and bulge at the center of the halo potential. The phase-space
structure of the central galactic halo reveals the presence of a dark disk
component, that is co-rotating with the stellar disk. At the Earth's location,
it contributes to around 25% of the total DM local density, whose value is
rho_DM ~ 0.37 GeV/cm^3. The velocity distributions also show strong deviations
from pure Gaussian and Maxwellian distributions, with a sharper drop of the
high velocity tail.
We give a detailed study of the impact of these features on the predictions
for DM signals in direct detection experiments. In particular, the question of
whether the modulation signal observed by DAMA is or is not excluded by limits
set by other experiments (CDMS, XENON and CRESST...) is re-analyzed and
compared to the case of a standard Maxwellian halo, in both the elastic and the
inelastic scattering scenarios. We find that the compatibility between DAMA and
the other experiments is improved. In the elastic scenario, the DAMA modulation
signal is slightly enhanced in the so-called channeling region, as a result of
several effects. For the inelastic scenario, the improvement of the fit is
mainly attributable to the departure from a Maxwellian distribution at high
velocity.Comment: 39 page
- …