497 research outputs found
Overview of the Tevatron Collider Complex: Goals, Operations and Performance
For more than two decades the Tevatron proton-antiproton collider was the
centerpiece of the world's high energy physics program. The collider was
arguably one of the most complex research instruments ever to reach the
operation stage and is widely recognized for numerous physics discoveries and
for many technological breakthroughs. In this article we outline the historical
background that led to the construction of the Tevatron Collider, the strategy
applied to evolution of performance goals over the Tevatron's operational
history, and briefly describe operations of each accelerator in the chain and
achieved performance.Comment: Includes modifications suggested by reviewer
Reduced order models for control of fluids using the Eigensystem Realization Algorithm
In feedback flow control, one of the challenges is to develop mathematical
models that describe the fluid physics relevant to the task at hand, while
neglecting irrelevant details of the flow in order to remain computationally
tractable. A number of techniques are presently used to develop such
reduced-order models, such as proper orthogonal decomposition (POD), and
approximate snapshot-based balanced truncation, also known as balanced POD.
Each method has its strengths and weaknesses: for instance, POD models can
behave unpredictably and perform poorly, but they can be computed directly from
experimental data; approximate balanced truncation often produces vastly
superior models to POD, but requires data from adjoint simulations, and thus
cannot be applied to experimental data.
In this paper, we show that using the Eigensystem Realization Algorithm (ERA)
\citep{JuPa-85}, one can theoretically obtain exactly the same reduced order
models as by balanced POD. Moreover, the models can be obtained directly from
experimental data, without the use of adjoint information. The algorithm can
also substantially improve computational efficiency when forming reduced-order
models from simulation data. If adjoint information is available, then balanced
POD has some advantages over ERA: for instance, it produces modes that are
useful for multiple purposes, and the method has been generalized to unstable
systems. We also present a modified ERA procedure that produces modes without
adjoint information, but for this procedure, the resulting models are not
balanced, and do not perform as well in examples. We present a detailed
comparison of the methods, and illustrate them on an example of the flow past
an inclined flat plate at a low Reynolds number.Comment: 22 pages, 7 figure
The physics impact of proton track identification in future megaton-scale water Cherenkov detectors
In this paper, we investigate the impact in future megaton-scale water
Cherenkov detectors of identifying proton Cherenkov rings. We estimate the
expected event rates for detected neutral current and charged current
quasi-elastic neutrino interactions from atmospheric neutrinos in a
megaton-scale Super-Kamiokande-like detector with both 40% and 20%
photo-cathode coverage. With this sample we examine the prospects for measuring
the neutrino oscillation pattern, and searching for sterile neutrinos. We also
determine the size of selected charged current quasi-elastic samples in a
300-kton fiducial volume Super-Kamiokande-like detector from examples of both
conventional super-beams and beta-beams proposed in the literature. With these
samples, it is shown that full kinematic neutrino reconstruction using the
outgoing proton can improve the reconstructed energy resolution, and give good
neutrino versus anti-neutrino tagging capabilities, adding important
capabilities to water Cherenkov detectors in future projects. We determine the
beam parameters necessary to make use of this technique and present
distributions of neutrino and anti-neutrino selection efficiencies.Comment: 21 pages, 8 figures. Revised version with improved figures, text and
structure, published in JHE
Lattice Dynamics and the High Pressure Equation of State of Au
Elastic constants and zone-boundary phonon frequencies of gold are calculated
by total energy electronic structure methods to twofold compression. A
generalized force constant model is used to interpolate throughout the
Brillouin zone and evaluate moments of the phonon distribution. The moments are
used to calculate the volume dependence of the Gruneisen parameter in the fcc
solid. Using these results with ultrasonic and shock data, we formulate the
complete free energy for solid Au. This free energy is given as a set of closed
form expressions, which are valid to compressions of at least V/V_0 = 0.65 and
temperatures up to melting. Beyond this density, the Hugoniot enters the
solid-liquid mixed phase region. Effects of shock melting on the Hugoniot are
discussed within an approximate model. We compare with proposed standards for
the equation of state to pressures of ~200 GPa. Our result for the room
temperature isotherm is in very good agreement with an earlier standard of
Heinz and Jeanloz.Comment: 13 pages, 8 figures. Accepted by Phys. Rev.
Fast Approximated POD for a Flat Plate Benchmark with a Time Varying Angle of Attack
An approximate POD algorithm provides an empirical Galerkin approximation with guaranteed a priori lower bound on the required resolution. The snapshot ensemble is partitioned into several sub-ensembles. Cross correlations between these sub-ensembles are approximated in terms of a far smaller correlation matrix. Computational speedup is nearly linear in the number of partitions, up to a saturation that can be estimated a priori. The algorithm is particularly suitable for analyzing long transient trajectories of high dimensional simulations, but can be applied also for spatial partitioning and parallel processing of very high spatial dimension data. The algorithm is demonstrated using transient data from two simulations. First, a two dimensional simulation of the flow over a flat plate, as it transitions from AOA = 30° to a horizontal position and back. Second, a three dimensional simulation of a flat plate with aspect ratio two as it transitions from a horizontal position to AOA = 30°
Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2
We report the most precise measurement to date of a parity-violating
asymmetry in elastic electron-proton scattering. The measurement was carried
out with a beam energy of 3.03 GeV and a scattering angle =6
degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per
million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor
combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/-
0.012 (FF) where the first two errors are experimental and the last error is
due to the uncertainty in the neutron electromagnetic form factor. This result
significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2.
A consistent picture emerges when several measurements at about the same Q^2
value are combined: G_E^s is consistent with zero while G_M^s prefers positive
values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.Comment: minor wording changes for clarity, updated references, dropped one
figure to improve focu
Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models
Both community ecology and conservation biology seek further understanding of
factors governing the advance of an invasive species. We model biological
invasion as an individual-based, stochastic process on a two-dimensional
landscape. An ecologically superior invader and a resident species compete for
space preemptively. Our general model includes the basic contact process and a
variant of the Eden model as special cases. We employ the concept of a
"roughened" front to quantify effects of discreteness and stochasticity on
invasion; we emphasize the probability distribution of the front-runner's
relative position. That is, we analyze the location of the most advanced
invader as the extreme deviation about the front's mean position. We find that
a class of models with different assumptions about neighborhood interactions
exhibit universal characteristics. That is, key features of the invasion
dynamics span a class of models, independently of locally detailed demographic
rules. Our results integrate theories of invasive spatial growth and generate
novel hypotheses linking habitat or landscape size (length of the invading
front) to invasion velocity, and to the relative position of the most advanced
invader.Comment: The original publication is available at
www.springerlink.com/content/8528v8563r7u2742
Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles
We have made the first measurements of the virtual Compton scattering (VCS)
process via the H exclusive reaction in the nucleon resonance
region, at backward angles. Results are presented for the -dependence at
fixed GeV, and for the -dependence at fixed near 1.5 GeV.
The VCS data show resonant structures in the first and second resonance
regions. The observed -dependence is smooth. The measured ratio of
H to H cross sections emphasizes the different
sensitivity of these two reactions to the various nucleon resonances. Finally,
when compared to Real Compton Scattering (RCS) at high energy and large angles,
our VCS data at the highest (1.8-1.9 GeV) show a striking -
independence, which may suggest a transition to a perturbative scattering
mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.
- …