35 research outputs found

    A study of supercooling of the disordered vortex phase via minor hysteresis loops in 2H-NbSe_2

    Get PDF
    We report on the observation of novel features in the minor hysteresis loops in a clean crystal of NbSe_2 which displays a peak effect. The observed behavior can be explained in terms of a supercooling of the disordered vortex phase while cooling the superconductor in a field. Also, the extent of spatial order in a flux line lattice formed in ascending fields is different from (and larger than) that in the descending fields below the peak position of the peak effect; this is attributed to unequal degree of annealing of the state induced by a change of field in the two cases.Comment: 5 pages of text + 6 figures, submitted to Phys. Rev.

    Magnetic Properties of Ternary Gallides of type RNi4Ga (R = Rare earths)

    Get PDF
    The magnetic properties of RNi4Ga (R = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu) compounds have been investigated. These compounds form in a hexagonal CaCu5 type structure with a space group P6/mmm. Compounds with the magnetic rare earths, R = Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm, undergo a ferromagnetic transition at 5 K, 17 K, 20 K, 19 K, 12 K, 3.5 K, 8 K and 6.5 K, respectively. The transition temperatures are smaller compared to their respective parent compounds RNi5. PrNi4Ga is paramagnetic down to 2 K. LaNi4Ga and LuNi4Ga are Pauli paramagnets. All the compounds show thermomagnetic irreversibility in the magnetically ordered state except GdNi4Ga.Comment: 14 Pages 6 Figures 1 Tabl

    Metastability and Transient Effects in Vortex Matter Near a Decoupling Transition

    Full text link
    We examine metastable and transient effects both above and below the first-order decoupling line in a 3D simulation of magnetically interacting pancake vortices. We observe pronounced transient and history effects as well as supercooling and superheating between the 3D coupled, ordered and 2D decoupled, disordered phases. In the disordered supercooled state as a function of DC driving, reordering occurs through the formation of growing moving channels of the ordered phase. No channels form in the superheated region; instead the ordered state is homogeneously destroyed. When a sequence of current pulses is applied we observe memory effects. We find a ramp rate dependence of the V(I) curves on both sides of the decoupling transition. The critical current that we obtain depends on how the system is prepared.Comment: 10 pages, 15 postscript figures, version to appear in PR

    Disordered Type-II Superconductors: A Universal Phase Diagram for Low-Tc_c Systems

    Full text link
    A universal phase diagram for weakly pinned low-Tc_c type-II superconductors is revisited and extended with new proposals. The low-temperature ``Bragg glass'' phase is argued to transform first into a disordered, glassy phase upon heating. This glassy phase, a continuation of the high-field equilibrium vortex glass phase, then melts at higher temperatures into a liquid. This proposal provides an explanation for the anomalies observed in the peak effect regime of 2H-NbSe2_2 and several other low-Tc_c materials which is independent of the microscopic mechanisms of superconductivity in these systems.Comment: 23 pages, 9 figure

    Phase Behavior of Type-II Superconductors with Quenched Point Pinning Disorder: A Phenomenological Proposal

    Full text link
    A general phenomenology for phase behaviour in the mixed phase of type-II superconductors with weak point pinning disorder is outlined. We propose that the ``Bragg glass'' phase generically transforms via two separate thermodynamic phase transitions into a disordered liquid on increasing the temperature. The first transition is into a glassy phase, topologically disordered at the largest length scales; current evidence suggests that it lacks the long-ranged phase correlations expected of a ``vortex glass''. This phase has a significant degree of short-ranged translational order, unlike the disordered liquid, but no quasi-long range order, in contrast to the Bragg glass. This glassy phase, which we call a ``multi-domain glass'', is confined to a narrow sliver at intermediate fields, but broadens out both for much larger and much smaller field values. The multi-domain glass may be a ``hexatic glass''; alternatively, its glassy properties may originate in the replica symmetry breaking envisaged in recent theories of the structural glass transition. Estimates for translational correlation lengths in the multi-domain glass indicate that they can be far larger than the interline spacing for weak disorder, suggesting a plausible mechanism by which signals of a two-step transition can be obscured. Calculations of the Bragg glass-multi-domain glass and the multi-domain glass-disordered liquid phase boundaries are presented and compared to experimental data. We argue that these proposals provide a unified picture of the available experimental data on both high-Tc_c and low-Tc_c materials, simulations and current theoretical understanding.Comment: 70 pages, 9 postscript figures, modified title and minor changes in published versio
    corecore