17 research outputs found

    The effects of cold working on sensitization and intergranular corrosion behavior of AISI 304 stainless steel

    Get PDF
    The effects of prior cold rolling of up to an 80 pct reduction in thickness on the sensitization-desensitization behavior of Type AISI 304 stainless steel and its susceptibility to intergranular corrosion have been studied by electrochemical potentiokinetic reactivation (EPR) and Strauss-test methods. The results indicate that the prior deformation accelerated the sensitization as compared to the undeformed stainless steel. The deformed Type 304 stainless steel experienced desensitization at higher temperatures and times, and it was found to be enhanced by increased cold deformation. This could be attributed to the increased long-range chromium diffusion, possibly brought on by increasing pipe diffusion and vacancies. The role of the deformation-induced martensite (DIM) and texture, introduced by uniaxial cold rolling, on the sensitization-desensitization kinetics has also been discussed. This study could not reveal any systematic relationship between texture and the degree of sensitization (DOS) obtained. The effect of DIM on DOS seems to be pronounced at 500 °C when the steel retained significant amounts of DIM; however, the retained DIM is insignificant at higher sensitization times and temperatures

    Low-Temperature Sensitization Behavior of Base, Heat-Affected Zone, and Weld Pool in AISI 304LN

    No full text
    Present investigations were focused on low-temperature sensitization (LTS) behavior of 304LN stainless steels considered from pipes of two different thicknesses. The specimens for the present study were taken from solution-annealed pipes (of varying thicknesses) and welded pipes (including the heat-affected zone (HAZ)). The specimens were subjected to thermal aging at 400 °C and 450 °C for different durations ranging from 125 to 8000 hours, to evaluate their sensitization susceptibility. The aging durations were worked out to simulate the 30-to-100-year life of the studied stainless steel at 300 °C using the Arrheneous equation and considering the activation energy of 150 kJ/mol. The thermally aged specimens were characterized for their degree of sensitization (DOS) and susceptibility to intergranular corrosion (IGC) by double-loop (DL) electrochemical potentiokinetic reactivation (EPR) and by methods given in the ASTM A262 practices A and E. It has been clearly shown that the weld pool is more sensitive to IGC than are the base and the HAZ at both the aging temperatures (LTS), because they showed IGC cracks during the bending subsequent to the boiling in H2SO4-CuSO4 solution. Both the base and the HAZ of the thicker pipe material showed susceptibility to sensitization, as indicated by the increasing DOS and “dual-type” microstructure during electrolytic oxalic acid (EOA) etching; however, they were found safe from IGC for the studied sensitization times. The susceptibility to sensitization and IGC in the weld pool is related to the presence of copious delta ferrite with chromium diffusivity that is accelerated compared to the austenite phase. The time-temperature-sensitization (TTS) curves were prepared accordingly, based on these results
    corecore