16 research outputs found

    Cell death following the loss of ADAR1 mediated A-to-I RNA editing is not effected by the intrinsic apoptosis pathway

    Get PDF
    Modifications of RNA, collectively termed as the epitranscriptome, are widespread, evolutionarily conserved and contribute to gene regulation and protein diversity in healthy and disease states. There are >160 RNA modifications described, greatly exceeding the number of modifications to DNA. Of these, adenosine-to-inosine (A-to-I) RNA editing is one of the most common. There are tens of thousands of A-to-I editing sites in mouse, and millions in humans. Upon translation or sequencing an inosine base is decoded as guanosine, leading to A-to-G mismatches between the RNA and DNA. Inosine has different base pairing properties to adenosine and as a result editing not only alters the RNA code but can also change the RNA structure. In mammals A-to-I editing is performed by ADAR1 and ADAR2. A feature of murine loss of function ADAR1 alleles is cell death and a failure to survive embryogenesis. Adar1-/- and editing deficient (Adar1E861A/E861A) mice die between E11.75-13.5 of failed hematopoiesis. Strikingly this phenotype is rescued by the deletion of the cytosolic dsRNA sensor MDA5 or its downstream adaptor MAVS, a mechanism conserved in human and mouse. Current literature indicates that the loss of ADAR1 leads to cell death via apoptosis, yet this has not been genetically established. We report that blockade of the intrinsic (mitochondrial) apoptosis pathway, through the loss of both BAK and BAX, does not rescue or modify the cellular phenotype of the fetal liver or extend the lifespan of ADAR1 editing deficient embryos. We had anticipated that the loss of BAK and BAX would rescue, or at least significantly extend, the gestational viability of Adar1E861A/E861A embryos. However, the triple mutant Adar1E861A/E861A Bak-/- Bax-/- embryos that were recovered at E13.5 were indistinguishable from the Adar1E861A/E861A embryos with BAK and BAX. The results indicate that cell death processes not requiring the intrinsic apoptosis pathway are triggered by MDA5 following the loss of ADAR1.Carl R. Walkley and Benjamin T. Kil

    Modelos para determinação dos parâmetros da equação de van Genuchten para um Cambissolo Models for determination of parameters of van Genuchten equation for a Cambisol

    No full text
    Com este trabalho, objetiva-se a geração de modelos matemáticos para predição dos 4 parâmetros da equação de van Genuchten (tetaR, tetaS, alfa e n) e para a umidade correspondente à capacidade de campo em função dos atributos areia, argila, matéria orgânica e densidade do solo, ambas de fácil e rotineira determinação em laboratório, além da profundidade. Coletaram-se 36 amostras não deformadas e deformadas nas profundidades de 0 a 30, 30 a 60 e 60 a 90 cm, em Cambissolo originado de gnaisse, determinando-se as umidades correspondentes às tensões de 2, 6 e 10 kPa em mesa de tensão e as referentes a 33, 100, 500 e 1500 kPa, em câmara de Richards. Para ajuste dos modelos, trabalhou-se com o programa SAS for Windows, com a rotina Proc Reg, e procedimento Backward, para selecionar as variáveis significativamente diferentes de zero num certo nível de probabilidade. Para avaliação dos modelos, consideraram-se o coeficiente de determinação e os erros de predição, tanto para os parâmetros estimados quanto para as umidades geradas pela equação de van Genuchten ajustada com os parâmetros estimados, para cada tensão descrita acima. Constatou-se que os erros foram consideravelmente pequenos, justificando a aplicação dos modelos.<br>This work proposes to adjust mathematical models to predict the parameters of van Genuchten equation (thetaR, thetaS, alpha and n), besides a model to predict the soil moisture corresponding to the field capacity. The models express the equation parameters as dependent variables and sand, clay, organic matter, bulk density and depth as independent variables. All independent variables can be easily and routinely determined in laboratory. The samples were collected at 12 points in and three layers (0-30; 30-60; 60-90 cm) of a Cambisol, using a Uhland sampler. The soil moisture at matric potentials of 2, 6 and 10 kPa were determined using a porous plate apparatus and those at matric potentials of 33, 100, 500 and 1500 kPa were determined using a pressure plate apparatus. The models were adjusted with the SAS for Windows program, ProcReg routine and Backward procedure to select the variables significantly different from zero at the probability level adopted. The coefficient of determination and prediction errors for the parameters predicted and soil moisture generated by van Genuchten equation adjusted with parameters predicted by models, were analyzed to evaluate the models. The coefficient of determination for models was high and the errors were small justifying the application of models

    Pedotransfer functions to estimate proctor test parameters under different tillage systems

    Get PDF
    The Proctor test is time-consuming and requires sampling of several kilograms of soil. Proctor test parameters were predicted in Mollisols, Entisols and Vertisols of the Pampean region of Argentina under different management systems. They were estimated from a minimum number of readily available soil properties (soil texture, total organic C) and management (training data set; n = 73). The results were used to generate a soil compaction susceptibility model, which was subsequently validated using a second group of independent data (test data set; n = 24). Soil maximum bulk density was estimated as follows: Maximum bulk density (Mg m-3) = 1.4756 - 0.00599 total organic C (g kg-1) + 0.0000275 sand (g kg-1) + 0.0539 management. Management was equal to 0 for uncropped and untilled soils and 1 for conventionally tilled soils. The established models predicted the Proctor test parameters reasonably well, based on readily available soil properties. Tillage systems induced changes in the maximum bulk density regardless of total organic matter content or soil texture. The lower maximum apparent bulk density values under no-tillage require a revision of the relative compaction thresholds for different no-tillage crops

    N2O emissions from a cultivated mollisol: optimal time of day for sampling and the role of soil temperature

    No full text
    The correct use of closed field chambers to determine N2O emissions requires defining the time of day that best represents the daily mean N2O flux. A short-term field experiment was carried out on a Mollisol soil, on which annual crops were grown under no-till management in the Pampa Ondulada of Argentina. The N2O emission rates were measured every 3 h for three consecutive days. Fluxes ranged from 62.58 to 145.99 ∝g N-N2O m-2 h-1 (average of five field chambers) and were negatively related (R² = 0.34, p < 0.01) to topsoil temperature (14 - 20 ºC). N2O emission rates measured between 9:00 and 12:00 am presented a high relationship to daily mean N2O flux (R² = 0.87, p < 0.01), showing that, in the study region, sampling in the mornings is preferable for GHG
    corecore