14 research outputs found

    Diabetic microangiopathy: Pathogenetic insights and novel therapeutic approaches

    Get PDF
    Diabetic microangiopathy, including retinopathy, is characterized by abnormal growth and leakage of small blood vessels, resulting in local edema and functional impairment of the depending tissues. Mechanisms leading to the impairment of microcirculation in diabetes are multiple and still largely unclear. However, a dysregulated vascular regeneration appears to play a key role. In addition, oxidative and hyperosmolar stress, as well as the activation of inflammatory pathways triggered by advanced glycation end-products and toll-like receptors, have been recognized as key underlying events. Here, we review recent knowledge on cellular and molecular pathways of microvascular disease in diabetes. We also highlight how new insights into pathogenic mechanisms of vascular damage in diabetes may indicate new targets for prevention and treatment

    Polymorphisms of pro-inflammatory IL-6 and IL-1\u3b2 cytokines in ascending aortic aneurysms as genetic modifiers and predictive and prognostic biomarkers

    Get PDF
    Background: Previous studies have demonstrated that polymorphisms involved in immune genes can affect the risk, pathogenesis, and outcome of thoracic ascending aortic aneurysms (TAAA). Here, we explored the potential associations of five functional promoter polymorphisms in interleukin-6 (IL-6), IL-1B, IL-1A, IL-18, and Tumor necrosis factor (TNF)A genes with TAAA. Methods: 144 TAAA patients and 150 age/gender matched controls were typed using KASPar assays. Effects on telomere length and levels of TAAA related histopathological and serological markers were analyzed. Results: Significant associations with TAAA risk were obtained for IL-6 rs1800795G>C and IL-1B rs16944C>T SNPs. In addition, the combined rs1800795C/rs16944T genotype showed a synergic effect on TAAA pathogenesis and outcome. The combined rs1800795C/rs16944T genotype was significantly associated with: (a) higher serum levels of both cytokines and MMP-9 and-2; (b) a significant CD3+CD4+CD8+ CD68+CD20+ cell infiltration in aorta aneurysm tissues; (c) a significant shorter telomere length and alterations in telomerase activity. Finally, it significantly correlated with TAAA aorta tissue alterations, including elastic fragmentation, medial cell apoptosis, cystic medial changes, and MMP-9 levels. Conclusions: the combined rs1800795C/rs16944T genotype appears to modulate TAAA risk, pathogenesis, and outcome, and consequently can represent a potential predictive and prognostic TAAA biomarker for individual management, implementation of innovative treatments, and selection of the more proper surgical timing and approaches

    The close link between brain vascular pathological conditions and neurodegenerative diseases: Focus on some examples and potential treatments

    No full text
    A close relationship is emerging among the age-related neurodegenerative decline, and the age-related typical alterations, dysfunctions, and related diseases of the cerobro-and/or cardiovascular system, which contributes in a significative manner to the triggering and progressing of neurodegenerative diseases (NeuroDegD). Specifically, macroinfarcts, microinfarcts, micro-hemorrhages (and particularly their number), atherosclerosis, arteriolosclerosis and cerebral amyloid angiopathy have been documented to be significantly associated with the onset of the cognitive impairment. In addition, vascular alterations and dysfunctions resulting in a reduced cerebral blood flow, and anomalies in the brain blood barrier (BBB), have been also demonstrated to contribute to NeuroDegD pathophysiologic processes. At the same time, such vascular alterations are also observed in cognitively unimpaired subjects. Here, some of these aspects are described with a particular focus on some NeuroDegD, as well as potential strategies for delaying or stopping their onset and progression

    Susceptibility to heart defects in down syndrome is associated with single nucleotide polymorphisms in has 21 interferon receptor cluster and vegfa genes

    Get PDF
    Background: Congenital heart defects (CHDs) are present in about 40\u201360% of newborns with Down syndrome (DS). Patients with DS can also develop acquired cardiac disorders. Mouse models suggest that a critical 3.7 Mb region located on human chromosome 21 (HSA21) could explain the association with CHDs. This region includes a cluster of genes (IFNAR1, IFNAR2, IFNGR2, IL10RB) encoding for interferon receptors (IFN-Rs). Other genes located on different chromosomes, such as the vascular endothelial growth factor A (VEGFA), have been shown to be involved in cardiac defects. So, we investigated the association between single nucleotide polymorphisms (SNPs) in IFNAR2, IFNGR2, IL10RB and VEGFA genes, and the presence of CHDs or acquired cardiac defects in patients with DS. Methods: Individuals (n = 102) with DS, and age-and gender-matched controls (n = 96), were genotyped for four SNPs (rs2229207, rs2834213, rs2834167 and rs3025039) using KASPar assays. Results: We found that the IFNGR2 rs2834213 G homozygous genotype and IL10RB rs2834167G-positive genotypes were more common in patients with DSand significantly associated with heart disorders, while VEGFA rs3025039T-positive genotypes (T/*) were less prevalent in patients with CHDs. Conclusions: We identified some candidate risk SNPs for CHDs and acquired heart defects in DS. Our data suggest that a complex architecture of risk alleles with interplay effects may contribute to the high variability of DS phenotypes

    The Role of Inflammation in Type a Aortic Dissection: A Pilot Study

    Get PDF
    Type A aortic dissection (TAAD) is a severe cardiovascular disease with high mortality rates. Current evidence suggests inflammation as the main mechanism of its complex pathophysiology. Accordingly, in this study the eventual presence of inflammatory cells in aorta specimens and any contribution of these cells in both apoptosis and metalloproteinase levels were assessed. The potential relationship between plasma inflammatory molecules and TAAD was also detected. In addition, implication in TAAD susceptibility of ten common and functional single nucleotide polymorphisms (SNP)s of six candidate genes (CCR5, TLR4, ACE, eNOs, MMP-9 and −2) was determined. Thus, histo-pathological and immunoistochemical aorta examination, TUNEL testing, genotyping of ten SNPs were performed. Levels of plasma inflammatory molecules were also determined using ELISA technique. A significant inflammatory infiltrate was observed in the examined aortas. Consistent with these data, significantly higher plasma levels of systemic inflammatory mediators characterized the cases. In addition, a high risk genotype significantly associated with TAAD susceptibility was identified. Thus, inflammation producing MMPs, cytokines and death mediators seem to be the shared pathological mechanism for TAAD in the population examined

    Polyamines and microbiota in bicuspid and tricuspid aortic valve aortopathy

    No full text
    Polyamines are small aliphatic cationic molecules synthesized via a highly regulated pathway and involved in general molecular and cellular phenomena. Both mammalian cells and microorganisms synthesize polyamines, and both sources may contribute to the presence of polyamines in the circulation. The dominant location for microorganisms within the body is the gut. Accordingly, the gut microbiota probably synthesizes most of the polyamines in the circulation in addition to those produced by the mammalian host cells. Polyamines are mandatory for cellular growth and proliferation. Established evidence suggests that the polyamine spermidine prolongs lifespan and improves cardiovascular health in animal models and humans through both local mechanisms, involving improved cardiomyocyte function, and systemic mechanisms, including increased NO bioavailability and reduced systemic inflammation. Higher levels of polyamines have been detected in non-dilated aorta of patients affected by bicuspid aortic valve congenital malformation, an aortopathy associated with an increased risk for thoracic ascending aorta aneurysm. In this review, we discuss metabolism of polyamines and their potential effects on vascular smooth muscle and endothelial cell function in vascular pathology of the thoracic ascending aorta associated with bicuspid or tricuspid aortic valve

    Vascular ageing and endothelial cell senescence: Molecular mechanisms of physiology and diseases

    No full text
    Ageing leads to a progressive deterioration of structure and function of all organs over the time. During this process endothelial cells undergo senescence and manifest significant changes in their properties, resulting in impairment of the vascular functionality and neo-angiogenic capability. This ageing-dependent impairment of endothelial functions is considered a key factor contributing to vascular dysfunctions, which is responsible of several age-related diseases of the vascular system and other organs. Several mechanisms have been described to control ageing-related endothelial cell senescence including microRNAs, mitochondrial dysfunction and micro environmental stressors, such as hypoxia. In this review, we attempt to summarize the recent literature in the field, discussing the major mechanisms involved in endothelial cell senescence. We also underline key molecular aspects of ageing-associated vascular dysfunction in the attempt to highlight potential innovative therapeutic targets to delay the onset of age-related diseases
    corecore