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Diabetic microangiopathy, including retinopathy, is characterized by abnormal growth and leakage of small
blood vessels, resulting in local edema and functional impairment of the depending tissues. Mechanisms leading
to the impairment of microcirculation in diabetes are multiple and still largely unclear. However, a dysregulated
vascular regeneration appears to play a key role. In addition, oxidative and hyperosmolar stress, aswell as the ac-
tivation of inflammatory pathways triggered by advanced glycation end-products and toll-like receptors, have
been recognized as key underlying events. Here, we review recent knowledge on cellular and molecular path-
ways of microvascular disease in diabetes. We also highlight how new insights into pathogenic mechanisms of
vascular damage in diabetes may indicate new targets for prevention and treatment.

© 2017 Elsevier Inc. All rights reserved.
Keywords:
Diabetes
Microangiopathy
Diabetes retinopathy
Cellular and molecular pathways
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Pathologic features of diabetic microvascular damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Cellular and molecular pathways in diabetic microvascular disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1. Endothelial cells and vascular smooth muscle cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.2. Endothelial progenitor cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3. Circulating smooth muscle cell progenitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4. Pericytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.5. Prominent role of the AGEs/RAGEs system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.6. The TLR-2 and -4 inflammatory signaling pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.7. Biophysical pathways: the role of hyperosmolar stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.8. Betaine and hyperglycemia-induced vascular damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Conflicts of interest declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
s; PKC, protein kinase C; DAG, diacylglycerol; ROS, reactive oxygen species; VEGF, vascular endothelial growth factor; VEGFR,
lial cells; VSMCs, vascular smooth muscle cells; vWF, von Willebrand Factor; MAPK, mitogen-activated protein kinase; MMPs,
rase;NF-κB, nuclear factor–kappaB; TLR, toll-like receptors; EPCs, endothelial progenitor;MCP,monocyte chemoattractant pro-
P-4, dipeptidyl peptidase-4; SMPCs, smoothmuscle progenitor cells; BMP6, Bonemorphogenetic protein 6; TNF, tumor necrosis
element binding; PDGF, platelet-derived growth factor; TGF-β, Transforming growth factor β signaling; HMGB1, high mobility
molecule; ICAM, intercellular adhesion molecule; LPS, lipopolysaccharide; AQP1, Aquaporin-1; COX, Cycloxygenase; NFAT, nu-
nding-protein; FGF, fibroblast growth factor.
.2016.07.007.

epartment of Neurosciences, Imaging and Clinical Sciences, and Center of Excellence on Aging (CesiMet), “G. d'Annunzio”
ia dei Vestini, 31, 66100 Chieti, Italy. Tel.:+39 0871 41512; fax:+39 0871 402817.

https://core.ac.uk/display/98114493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vph.2017.01.004&domain=pdf
http://dx.doi.org/10.1016/j.vph.2017.01.004
mailto:rdecater@unich.it
http://dx.doi.org/10.1016/j.vph.2017.01.004
http://www.sciencedirect.com/science/journal/15371891
www.elsevier.com/locate/vph


2 R. Madonna et al. / Vascular Pharmacology 90 (2017) 1–7
1. Introduction

Macro- and microvascular complications are important causes of
morbidity and mortality in patients with type 1 (T1DM) and type 2 di-
abetes (T2DM). The pathogenesis of vascular dysfunctions in diabetes
is incompletely understood [1,2]. Hyperglycemia, a key feature of diabe-
tes, is known to exacerbate macrovascular disease, but is also consid-
ered the main mechanism setting the stage for the onset of
microvascular diseases, now the leading cause of blindness (retinopa-
thy), end-stage renal failure (kidney disease), diabetic cardiomyopathy
andperipheral neuropathy. Onemechanism, possibly an importantfinal
common pathway, through which hyperglycemia causes or aggravates
micro- and macrovascular damage, is oxidative stress caused by high
glucose. It induces endothelial damage by triggering the polyol path-
way, the formation of advanced glycation end products (AGEs), and
the activation of the protein kinase C (PKC)-diacylglycerol (DAG) and
hexosamine pathways (reviewed in [1,2]). The link between reactive
oxygen species (ROS), vascular endothelial growth factor (VEGF) signal-
ing and retinal neovascularization in a conditionmimicking hyperglyce-
mia, is the focus of the research work by Park and co-authors published
in this issue of Vascular Pharmacology [3]. Here, the authors found that
betaine (trimethylglycine), a natural specific type of zwitterion, known
to improve visual acuity, has antioxidant properties and inhibits patho-
logical neovascularization of human retinal microvascular endothelial
cells exposed to high glucose levels, by attenuating ROS production,
and subsequently suppressing both the VEGF receptor (VEGFR)-2 sig-
naling pathway and VEGF production [3]. Betaine was, here, reported
to act on the hyperosmolar component of hyperglycemia [4], a biophys-
ical mechanism known to contribute to the development of microvas-
cular disease in diabetes [5–7]. Thus, betaine would act on one
pathway leading from hyperglycemia to microangiopathy.

Other pathways, besides hyperosmolarity, are, however, recognized
to contribute to diabetic microangiopathy. These include a dysregulated
vessel regeneration and impaired function of vascular cells (i.e., endo-
thelial cells (ECs), vascular smooth muscle cells (VSMCs), stromal
cells, pericytes, inflammatory cells, circulating and tissue-resident vas-
cular stem/progenitor cells), all involved in themaintenance of vascular
homeostasis and permeability [8,9]. The present review summarizes re-
cent advances in the research of cellular andmolecular pathways of mi-
crovascular disease in diabetes, provides insights into pathogenic
mechanisms of vascular damage in diabetes, and indicates potential
new targets for prevention and treatment strategies. This review should
thus help putting the original work by Park et al. [3] in the broader con-
text of the available pertinent literature.
2. Pathologic features of diabetic microvascular damage

Diabeticmicrovascular disease is pathologically characterized by ab-
normal growth and permeability of microcirculatory vessels [10]. Arte-
rioles, capillaries and venules are the smallest functional unit of the
microvascular bed. Unlike macrovessels, the specific role of which is to
convey blood to the microcirculation in all organs and tissues,
microvessels have specific roles in oxygen and micronutrient delivery.
Permeability to small molecules, regulation in the physical dimensions
and functional properties of the basement membrane are main micro-
circulatory features, which vary in different types of microvascular
beds, such as the glomeruli, the retina, the myocardium, the skin and
themuscle [10]. Apoptotic death of podocytes and pericytes are specific
changes in diabetic microvessels, occurring in the kidney and in the ret-
ina, respectively [11]. In particular, in the diabetic retina pericytes un-
dergo accelerated apoptosis, thereby contributing to an increase in
vascular permeability and retinal edema [12]. Furthermore, the loss of
pericytes activates a disordered capillarization, consisting of acellular
capillaries and micro-aneurysms, which are responsible for impaired
perfusion and consequent tissue hypoxia, as well as dysregulated
neovascularization [12]. These aspects will be now described in greater
detail.

3. Cellular and molecular pathways in diabetic microvascular
disease

Endothelial cell damage and malfunction are common in diabetes,
and contribute to the progressive loss of microvascular repair mecha-
nisms [13]. Over the past decade, there has been increasing evidence
that the integrity of the vascular wall is maintained by diversified cell
populations, dedicated to endothelial repair and angiogenesis [8,9,14,
15]. Diabetic patients often show deterioration of those cell types, espe-
cially in the presence of other cardiovascular complications [13,16].
Since hyperglycemia negatively affects the growth reserve of progenitor
cells and the cellular capacity of vessel wall repair, vascular complica-
tions of diabetesmay reflect a “stemcell vasculopathy”, inwhich the de-
fective stem cell compartment is unable to regenerate dying ECs or
VSMCs, or inwhich the dysfunctional stem cell compartment itself con-
tributes to the development of the disease (Fig. 1).

3.1. Endothelial cells and vascular smooth muscle cells

Several studies have shown that exposure to high levels of glucose
leads to a series of biochemical, structural and functional changes inma-
ture vascular ECs and VSMCs, which can be summarized as follows [2,
17]: 1) biochemical changes: accumulation of advanced glycation end-
products (AGEs); increased production of the procoagulant protein
von Willebrand Factor (VWF); increased apoptosis, induced by in-
creased oxidative stress; increase in intracellular Ca2+; mitochondrial
dysfunction; changes in intracellular metabolism of fatty acid; activa-
tion of the mitogen-activated protein kinase (MAPK) signaling path-
ways; and reduced phosphorylation/activation of protein kinase B
(also known as Akt); 2) structural changes: increased production of
extracellular matrix proteins, collagen and fibronectin, and of related
enzymes (i.e., matrix metalloproteinases, MMPs); 3) functional chang-
es: reduction in cell proliferation and migration; impairment of
endothelium-dependent vasodilatation, linked to decreased production
of vasodilators and increased production of vasoconstrictors; induction
of ischemia and neo-angiogenesis [17]. In human retinal ECs, both the
poly-ADP-ribose polymerase (PARP) and the nuclear factor–kappa B
(NF-κB) signaling play central roles, as described below. Diabetic injury
activates PARP, which in turn induces NF-κB activation preferentially
through the toll-like receptor (TLR) signaling pathway, and causes cell
apoptosis [18]. Similar to the NF-κB pathway, but with opposite biolog-
ical effects, the evolutionarily conserved Notch-1 pathway, centered
around Notch-1, a member of the Notch family of receptors involved
both in stem/progenitor cell fate and orientation, and in the life cycle
of adult cells, plays a key role in EC function regulation and VSMC prolif-
eration, differentiation, and apoptosis [19]. The existence of a fine inter-
action between these signaling pathways has been suggested, and
growing evidence indicates a complex cooperation between Notch-1,
TLR-4 and NF-κB [19]. Recent studies have found that apoptosis is in-
creased in diabetic mice and in human retinal ECs treated in vitro with
high glucose, through the activation of PARP and cleaved caspase-3, as
well as through the reduced expression of Notch-1 and p-Akt. Notch-1
signalingparticipates in the interaction of PARP and the p50NF-κB com-
ponent, and inhibits PARP- and p50-mediated apoptosis. Thus, Notch-1
signaling protects human retinal ECs from PARP- and NF-κB-induced
apoptosis occurring under high glucose [20]. In addition, human retinal
ECs and VSMCs show aberrant expression of the Notch-1 ligand jagged
1, and abnormal angiogenesis [21].

TheWnt signaling pathway also plays a fundamental role inmultiple
physiological and pathological processes in ECs, including angiogenesis
and inflammation [22]. The loss or gain of function of Wnt pathway
components causes abnormal vascular development and angiogenesis.
Mutations in Wnt co-receptors, such as Frizzled, or in other upstream



Fig. 1. Pathways associated with diabetic microangiopathy.
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molecules result in severely defective retinal vascularization [22]. Fur-
thermore, kallistatin, an endogenous Wnt antagonist, exerts anti-
angiogenic and anti-neuroinflammatory effects by inhibiting canonical
Wnt signaling in murine models of diabetic retinopathy [23].

3.2. Endothelial progenitor cells

Diabetic patients develop vascular dysfunction together with im-
paired circulating endothelial progenitor cells (EPCs)-(see [24,25]) for
reviews on characterization and current methods of isolation of EPCs)-
especially in the presence of comorbidities. While the percentage of
EPCs (defined as CD34+/CD133+/VEGFR2+ cells) in a healthy adult
subject is only 0.01% or less of peripheral bloodmononuclear cells, in di-
abetic patients the number of EPCs is decreased, and later restored by
intensive glycemic control [13,26]. EPCs have a therapeutic impact on
cardiovascular tissue repair and regeneration by playing various roles
in the formation of new blood vessels, including mobilization, migra-
tion, adhesion, differentiation of vascular cells, and theproduction of ad-
equate circulating levels of growth factors and chemokines, necessary
for tissue repair and regeneration [27–30]. In fact, experimental and
clinical studies suggest that EPCs can home to sites of a pre-existing ves-
sel, and from there form neovessels under the influence of VEGF,
chemokines and integrins, includingmonocyte chemoattractant protein
(MCP)-1, stromal cell derived factor-1 (SDF-1), angiopoietin (Ang-1)
and the α4β1 integrin [31–35]. Dysregulated levels of these molecules
may contribute to a decrease in the number and function of EPCs in di-
abetes [31–34,36]. These defects are associated with a more rapid pro-
gression of microvascular disease [37]. Increasing EPC number and
functionmight be a goal of stem cell-based cellular therapies for diabet-
ic vascular disease. The therapeutic use of EPCs with restored numbers
and functions has been proposed and put in practice in diabetes. For ex-
ample, the chemokine SDF-1 is involved in the traffic of EPCs from the
bone marrow to the peripheral blood, and directs EPC homing to dam-
aged tissues [38]. Interestingly, SDF-1 is a physiologic substrate of the
enzyme dipeptidyl peptidase-4 (DPP-4, also known as CD26). Oral
DPP-4 inhibitors are widely used for the treatment of T2DM, as they in-
crease the bioavailability of incretin hormones, which regulate insulin
release in response to a meal [39,40]. It has recently been shown that
a 4-week treatment with the DPP-4 inhibitor sitagliptin in T2DM pa-
tients increases the number of circulating EPCs, with concomitant
upregulation of SDF-1 levels [39]. Furthermore, mice that are deficient
for DPP-4 (CD26 knock-out mice) are protected from ischemic myocar-
dial injury, with a concomitant upregulation of tissue and plasma level
of SDF-1 [41].

3.3. Circulating smooth muscle cell progenitors

Besides EPCs, peripheral blood also contains smoothmuscle progen-
itor cells (SMPCs), also known as myofibroblast progenitor cells. Like
EPCs, SMPCs can contribute to the repair and regeneration of atheroscle-
rotic vessels [42]. SMPCs can be cultured from human peripheral blood
mononuclear cells in vitro and express smooth muscle cell α-actin.
More detailed cell subset analysis revealed that these cells may be de-
rived from a population of CD14+/CD105+ monocyte-like cells. The
abundance of CD14+/CD105+-derived SMPCs in the peripheral blood
of patients with diabetes, expressing reduced expression of the anti-
fibrotic bonemorphogenetic protein 6 (BMP6) [43], are increased com-
pared to healthy subjects [42]. Thus, diabetic patients may also have a
disturbed balance in vascular progenitor cells involved not only in the
maintenance of endothelial integrity (i.e., EPCs), but also in atherogene-
sis (i.e., SMPCs) and this is, at least in part, responsible for the increased
susceptibility of the diabetic vessel wall to atherosclerosis and
restenosis.

3.4. Pericytes

Vascular pericytes have recently come into the focus of investigators
as key regulators of vascular maturation, stabilization and repair, there-
fore constituting potential targets for therapy [44]. Pericyte abundance,
function and recruitment are remarkably altered in diabetes, contribut-
ing tomicrovascular damage in the retina, the kidney and the heart [45].
In fact, an early histopathologic feature of diabetic microangiopathy is
the selective degeneration of pericytes in capillary vessels [46]. In the
retina of diabetic patients, pericytes regress due to accelerated apopto-
sis, thus contributing to increased vascular permeability and retinal
edema [47]. The loss of pericytes activates a disordered capillarization,
represented by acellular capillaries and microaneurysms, which are re-
sponsible for areas of underperfusion of the depending tissues [48].
Mechanisms underlying pericyte apoptosis include the formation of
AGEs and the tumor necrosis factor (TNF)-α-dependent activation of
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the Forkhead box O1 (FOXO1) transcription factor [49–51]. Pericytes
from healthy subjects contribute to reparative angiogenesis through
paracrine mechanisms and the physical interaction with resident ECs,
involving angiopoietin 1, platelet-derived growth factor (PDGF)-BB
and cAMP-responsive element binding (CREB)/miR-132 [52]. In addi-
tion, pericytes promote the recruitment of proangiogenic CD14+/
CD16+ cells through a chemokine-mediated mechanism involving the
fractalkine receptor CX3CR1 [52].

Transforming growth factor β signaling (TGF-β) is another pathway
involved in the pathogenesis of diabetic retinopathy, because it
regulates the differentiation of retinal pericytes during vascular devel-
opment of the retina. In transgenic Tgfbr2Δeye mice, deletions in
elements of the TGF-β pathway have been shown to determine the im-
pairment of pericyte differentiation, which resulted in structural and
functional changes in the retina thatmimic those of diabetic retinopathy
[53].

3.5. Prominent role of the AGEs/RAGEs system

Increased production of AGEs via non-enzymatic glycation and
glycoxidation processes is one of the most important mechanisms in-
volved in the pathophysiology of micro- and macrovascular complica-
tions of diabetes [54–57] (Figure 1). The intracellular accumulation of
AGEs and their interaction with associated receptors, RAGEs, alter the
cytoplasmic and transcription nuclear factors, including proteins in-
volved in the regulation of gene transcription [57]. AGEs also lead to
the formation of stable cross-linkswith collagen,which causes chemical
and biophysical changes of collagen structure and consequent function-
al changes, such as a thickening of the basement membrane and in-
creased resistance to proteolytic digestion [58]. In addition, AGEs/
RAGEs interaction leads to cellular signaling, including NF-κB activation,
increased expression of cytokines and adhesion molecules, induction of
oxidative stress, and increased formation of cytosolic ROS [59]. A num-
ber of RAGE ligands have been identified in diabetic patients, including
members of the S100 calgranulin family and high mobility group box 1
(HMGB1). The interaction of these ligands with RAGEs can trigger the
interaction with TLRs and innate immune system signaling molecules,
particularly TLR-4 [59]. Furthermore, a new class of molecules, the solu-
ble RAGEs (sRAGEs), has recently added its contribution to this complex
scenario. The total pool of sRAGEs in the plasma is involved in a wide
range of micro- and macrovascular damage, even in non-diabetic sub-
jects [60]. Several variants of sRAGEs exist, including endogenous solu-
ble RAGEs (esRAGEs) and circulating truncated variants of the RAGE
isoform, which are able to neutralize the AGE-mediated damage by
competing with cell-surface RAGEs for ligand binding. Therefore,
esRAGEs are an expression of the antioxidant status, with a key role in
protection against early vascular damage [61]. Among all the biochem-
ical mechanisms involved in diabetic vascular damage, the AGE path-
way appears to be the most important in the pathogenesis and
progression of microvascular complications. AGEs have multiple intra-
and extracellular targets. As a result, they can be seen as a “bridge” be-
tween the intracellular and extracellular damage. Moreover, whatever
the level of hyperglycemia, AGE-related intracellular glycation of mito-
chondrial respiratory chain proteins has been found to produce more
abundant ROS [62], which further promotes AGE formation. Excessive
AGE formation leads to a thickening of the microvessel, hypertension,
endothelial dysfunction, loss of pericytes, decreased platelet survival
and increased platelet aggregation. All these abnormalities may pro-
mote a procoagulant state, resulting in ischemia and induction of
growth factors, with angiogenesis and neovascularization [63].

3.6. The TLR-2 and -4 inflammatory signaling pathways

Inflammation is one of the key events that characterizes the early
steps of diabetic microangiopathy (Fig. 1). Accordingly, the activation
of NF-κB caused by high glucose determines an enhanced expression
of various inflammatory molecules and evokes inflammatory responses
in monocyte/macrophages, the microglia, and retinal ECs. In addition,
TLR-2 and -4 signaling pathways appear to be the main triggers of
these inflammatory responses. Recent in vitro studies have shown that
high concentrations of glucose significantly increase TLR-2 and TLR-4
mRNA and protein expression in human microvascular ECs, as well as
the activation of NF-κB p65, the expression of inflammatory markers
such as interleukin (IL)-8, IL-1β, TNF-α, MCP-1, and vascular cell adhe-
sion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1
[64,65]. All these events were reversed by TLR-4 or TLR-2 inhibition, or
dual inhibition of these pathways by TLR4/2 inhibitory peptide. In addi-
tion, antioxidant treatments reduce TLR-2 and TLR-4 expression and
downstream inflammatory events. Collectively, these data suggest
that hyperglycemia induces TLR-2 and TLR-4 activation and down-
stream inflammatory signaling, possibly through ROS [65].

The crucial role of TLR-4 was also confirmed by data showing that
deletions or mutations in the TLR-4 gene may either protect against or
exacerbate fatty acid-induced insulin resistance and obesity induced
by diet [66–68]. A +896 A N G single nucleotide polymorphism (SNP)
causes the substitution of Asp299with Gly, modifying the normal struc-
ture of extracellular region of TLR-4. This +896 A N G TLR-4 polymor-
phism may be associated with decreased ligand recognition or protein
interaction, and altered responsiveness to lipopolysaccharide (LPS). In
particular, T2DM patients carrying the AG or the GG genotypes feature
an increased risk of developing retinopathy comparedwith patients car-
rying the AA genotype [69–71].

3.7. Biophysical pathways: the role of hyperosmolar stress

The hyperosmolar component of hyperglycemia is an important bio-
physical mediator of diabetic vascular disease [72] (Fig. 1). In overt
T1DM and T2DM, hyperglycemia causes an increase in plasma osmolar-
ity, resulting in the osmotic efflux of water, which reduces the intracel-
lular volume (cell shrinking) and promotes adaptive responses,
including the activation of hyperosmolarity-responsive genes, involved
in glucotoxicity and vascular injury [73]. Aquaporin-1 (AQP1) [74] is an
example of proteins induced by hyperosmolarity. Aquaporins are a fam-
ily of 10 different water-specific, membrane-channel proteins
expressed in diverse tissues [74]. Aquaporins have been shown to play
an important role in controlling the interplay between vascular perme-
ability and angiogenesis [74]. AQP1 is a membrane water channel
playing an important role in increasing the water permeability of cell
membranes and promoting the water transport across cells driven by
osmotic pressure. AQP1 is specifically and strongly expressed in many
microvascular ECs outside the brain, in adult and embryonic fibroblasts,
in the retina and in adipose tissue-derivedmesenchymal stem cells [74],
and has a promoting role in angiogenesis and vascular development
[75]. AQP1 is also expressed in atherosclerotic lesions following balloon
injury, especially in neointimal VSMCs [76].

Cycloxygenase (COX)-2 has prominent pro-angiogenic effects [77].
COX-2, which is induced by cytokines, mitogens and endotoxin, regu-
lates the expression and activity of MMP-9 [78]. Although the role of
COX-2 in atherothrombosis remains controversial [79], endothelial
COX-2 and MMPs have been shown to co-localize in unstable plaques
and the retina, where they play an essential role in angiogenesis and re-
lated complications, such as plaque destabilization [80], as well as pro-
liferative diabetic retinopathy [6], both characterized by excessive
angiogenesis [8,81]. MMP-9 is strongly induced by cytokines in
macro- and microvascular endothelial cells, while MMP-2 is refractory
to these stimuli or less markedly induced [82]. In human monocyte/
macrophages [83], and ECs [83], high glucose was shown to induce
the expression of MMP-2 and -9, and of COX-2. The transcription factor,
Tonicity-responsive binding-protein TonEBP/NFAT5, also called nuclear
factor of activated T cells (NFAT)-5, is the molecular link between
hyperosmotic stress and pro-inflammatory/proangiogenic molecules,
such as COX-2 and MMPs. TonEBP/NFAT5 is a master transcription
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factor of osmosensing genes responsive to hyperosmolar stress, includ-
ing pro-inflammatory cytokines such as TNF-α in macrophages [84]. In
renal medullary epithelial cells, hyperosmolar stress increases COX-2
promoter activity in a luciferase reporter assay [85,86]. In addition, hy-
pertonic saline has been reported to induce COX-2 in rat macrophages
[87] and human ECs [88]. The participation of NFAT transcription factors
in COX-2 activation was also already shown in several additional cell
types [89–94]. In fact, previous research had shown that the angiogenic
signaling involved in the induction of COX-2 by VEGF in human ECs re-
quires the activation of NFAT proteins [91]. Furthermore, TonEBP/
NFAT5 is necessary for the hyperosmolar induction of COX-2 in renal
epithelial cells [89]. An upregulation of the NFAT/MMP-2 pathway was
also demonstrated in the development of metastatic osteosarcoma,
where the secretion of active MMP-2 is under the transcriptional regu-
lation of NFAT [90]. We have demonstrated that induction of COX-2 in
microvascular endothelial cells and in the retina of diabetic Ins2Akita
mice is largely hyperosmolarity-related, and that TonEBP/NFAT5 is
here involved [6]. We have also shown that, in diabetic Ins2Akita mice,
retinal COX-2 and AQP1 are upregulated in conjunction with increased
angiogenesis [6]. Finally, interruption of the AQP1 axis by siRNA attenu-
ated in vivo angiogenesis in response to high glucose [6]. These results
showed that the hyperosmolar stress is a biophysical mechanism
through which excessive angiogenesis can occur in diabetes.

3.8. Betaine and hyperglycemia-induced vascular damage

Betaine is an organic osmolyte, which serves as a source of methyl
groups and plays a role in the control of the osmotic pressure inside
the intestinal epithelial cells and renal cells. Betaine usually derives
from the diet or choline oxidation. Betaine methylates homocysteine
to methionine, also producing N,N-dimethylglycine. Betaine is impor-
tant in development, from pre-implantation embryo to infancy. Betaine
failure may contribute to metabolic syndromes, including lipid disor-
ders and diabetes, andmay have a role in atherosclerosis and other dis-
eases [95]. Betaine supplementation improves animal health, but the
effect of its long-term supplementation in humans is not known, al-
though reports that it improves athletic performance will stimulate fur-
ther studies. Subgroups of subjects that may benefit from betaine
supplementation could be identified in the laboratory, particularly
those who lose betaine excessively through the urine. Plasma betaine
levels are highly variable, being typically 20–60 μM/L in women and
25–75 μM/L in men. Plasma dimethylglycine is typically b10 μM/L.
Urine betaine excretion is minimal, even after a large dose of betaine.
It is constant, highly variable among individuals, and usually b-
35 mmol/mol creatinine.

In this issue of Vascular Pharmacology, Park et al. [3] report that beta-
ine inhibits retinal neovascularization associated with oxidative stress
and the in vitro growth of human retinal microvascular ECs. This study
demonstrates that betaine attenuates ROS production, and subsequent-
ly suppresses VEGFR-2 signaling pathway andVEGF production. Dietary
betaine supplementation has been shown to increase fibroblast growth
factor (FGF)21 levels, to improve glucose homeostasis, and to reduce
the hepatic lipid accumulation in mice [96]. Betaine plasma levels in
humans are reduced in insulin-resistant conditions, and correlate close-
lywith insulin sensitivity. However, betaine administration failed to im-
prove glucose homeostasis and fat content in the liver of FGF21 knock-
out mice, suggesting that FGF21 is required for the beneficial effects of
betaine. Taken together, betaine supplementation warrants further in-
vestigation as a nutritional supplement for patients with T2DM for its
effects on diabetic microvasculopathy.

4. Conclusions

A significant number of promising therapeutic targets have been
shown in preclinical models of diabetic microangiopathy, as summa-
rized and discussed above. In humans, at present, the most effective
strategy to prevent microvascular complications of diabetes still re-
mains, however, the intensive treatment of hyperglycemia or the im-
provement of glycometabolic control. While glycemic control has still
uncertain results in controlling macrovascular complications, its role
in curbing the risk of retinopathy is clear [1,2]. While we eagerly wait
for better insights into the pathogenesis of diabetic microangiopathy
to explore new therapeutic options, our best goal at present still is to
continue to ensure a tighter glycemic control in diabetic patients. This
step should be taken as early as possible in the natural history of the dis-
ease, as it is currently the only viable option for preventing and slowing
down the progression of diabetic microangiopathy [97–100].
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