3,361 research outputs found
Structural ambiguity of the Chinese version of the hospital anxiety and depression scale in patients with coronary heart disease
Background
The Hospital Anxiety and Depression Scale (HADS) is a widely used screening tool designed as a case detector for clinically relevant anxiety and depression. Recent studies of the HADS in coronary heart disease (CHD) patients in European countries suggest it comprises three, rather than two, underlying sub-scale dimensions. The factor structure of the Chinese version of the HADS was evaluated in patients with CHD in mainland China.
Methods
Confirmatory factor analysis (CFA) was conducted on self-report HADS forms from 154 Chinese CHD patients.
Results
Little difference was observed in model fit between best performing three-factor and two-factor models.
Conclusion
The current observations are inconsistent with recent studies highlighting a dominant underlying tri-dimensional structure to the HADS in CHD patients. The Chinese version of the HADS may perform differently to European language versions of the instrument in patients with CHD
The impact of genetic background and cell lineage on the level and pattern of gene expression in position effect variegation
Background: Chromatin-based transcriptional silencing is often described as a stochastic process, largely because of the mosaic expression observed in position effect variegation (PEV), where a euchromatic reporter gene is silenced in some cells as a consequence of juxtaposition with heterochromatin. High levels of variation in PEV phenotypes are commonly observed in reporter stocks. To ascertain whether background mutations are the major contributors to this variation, we asked how much of the variation is determined by genetic variants segregating in the population, examining both the level and pattern of expression using the fruit fly, Drosophila melanogaster, as the model.
Results: Using selective breeding of a fourth chromosome PEV reporter line, 39C-12, we isolated two inbred lines exhibiting contrasting degrees of variegation (A1: low expression, D1: high expression). Within each inbred population, remarkable similarity is observed in the degree of variegation: 90% of the variation between the two inbred lines in the degree of silencing can be explained by genotype. Further analyses suggest that this result reflects the combined effect of multiple independent trans-acting loci. While the initial observations are based on a PEV phenotype scored in the fly eye (hsp70-white reporter), similar degrees of silencing were observed using a beta-gal reporter scored across the whole fly. Further, the pattern of variegation becomes almost identical within each inbred line; significant pigment enrichment in the same quadrant of the eye was found for both A1 and D1 lines despite different degrees of expression.
Conclusions: The results indicate that background genetic variants play the major role in determining the variable degrees of PEV commonly observed in laboratory stocks. Interestingly, not only does the degree of variegation become consistent in inbred lines, the patterns of variegation also appear similar. Combining these observations with the spreading model for local heterochromatin formation, we propose an augmented stochastic model to describe PEV in which the genetic background drives the overall level of silencing, working with the cell lineage-specific regulatory environment to determine the on/off probability at the reporter locus in each cell. This model acknowledges cell type-specific events in the context of broader genetic impacts on heterochromatin formation.
Keywords: Heterochromatin; Modifiers of PEV; PEV; Transcription regulation
A lumped conceptual model to simulate groundwater level time-series
Lumped, conceptual groundwater models can be used to simulate groundwater level time-series quickly and efficiently without the need for comprehensive modelling expertise. A new model of this type, AquiMod, is presented for simulating groundwater level time-series in unconfined aquifers. Its modular design enables users to implement different model structures to gain understanding about controls on aquifer storage and discharge. Five model structures are evaluated for four contrasting aquifers in the United Kingdom. The ability of different model structures and parameterisations to replicate the observed hydrographs is examined. AquiMod simulates the quasi-sinusoidal hydrographs of the relatively uniform Chalk and Sandstone aquifers most efficiently. It is least efficient at capturing the flashy hydrograph of a heterogeneous, fractured Limestone aquifer. The majority of model parameters demonstrate sensitivity and can be related to available field data. The model structure experiments demonstrate the need to represent vertical aquifer heterogeneity to capture the storage-discharge dynamics efficiently
Targeting heterochromatin formation to transposable elements in Drosophila: potential roles of the piRNA system
Successful heterochromatin formation is critical for genome stability in eukaryotes, both to maintain structures needed for mitosis and meiosis and to silence potentially harmful transposable elements. Conversely, inappropriate heterochromatin assembly can lead to inappropriate silencing and other deleterious effects. Hence targeting heterochromatin assembly to appropriate regions of the genome is of utmost importance. Here we focus on heterochromatin assembly in Drosophila melanogaster, the model organism in which variegation, or cell-to-cell variable gene expression resulting from heterochromatin formation, was first described. In particular, we review the potential role of transposable elements as genetic determinants of the chromatin state and examine how small RNA pathways may participate in the process of targeted heterochromatin formation
Scattering in a Simple 2-d Lattice Model
L\"uscher has suggested a method to determine phase shifts from the finite
volume dependence of the two-particle energy spectrum. We apply this to two
models in d=2: (a) the Ising model, (b) a system of two Ising fields with
different mass and coupled through a 3-point term, both considered in the
symmetric phase. The Monte Carlo simulation makes use of the cluster updating
and reduced variance operator techniques. For the Ising system we study in
particular O() effects in the phase shift of the 2-particle scattering
process.Comment: 4 p + 2 PS-figures, UNIGRAZ-UTP-21-10-9
Reconstruction of multi-decadal groundwater level time-series using a lumped conceptual model
Multi-decadal groundwater level records, which provide information about long-term variability and trends, are relatively rare. Whilst a number of studies have sought to reconstruct river flow records, there have been few attempts to reconstruct groundwater level time-series over a number of decades. Using long rainfall and temperature records, we developed and applied a methodology to do this using a lumped conceptual model. We applied the model to six sites in the UK, in four different aquifers: Chalk, limestone, sandstone and Greensand. Acceptable models of observed monthly groundwater levels were generated at four of the sites, with maximum Nash–Sutcliffe Efficiency scores of between 0.84 and 0.93 over the calibration and evaluation periods, respectively. These four models were then used to reconstruct the monthly groundwater level time-series over approximately 60 years back to 1910. Uncertainty in the simulated levels associated with model parameters was assessed using the Generalized Likelihood Uncertainty Estimation method. Known historical droughts and wet period in the UK are clearly identifiable in the reconstructed levels, which were compared using the Standardized Groundwater Level Index. Such reconstructed records provide additional information with which to improve estimates of the frequency, severity and duration of groundwater level extremes and their spatial coherence, which for example is important for the assessment of the yield of boreholes during drought period
Groundwater drought forecasting using lumped conceptual models
For
fractured aquifers, such as the Cretaceous Chalk, autocorrelation
in SGI (Bloomfield & Marchant, 2013) has been inferred
to be primarily
related to autocorrelation in the recharge time series, while in granular
aquifers, such as the Permo–
Triassic sandstones, autocorrelation in
SGI is inferred to be primarily a function of intrinsic
saturated flow and
storage properties of aquife
Thermal expansion and pressure effect in MnWO4
MnWO4 has attracted attention because of its ferroelectric property induced
by frustrated helical spin order. Strong spin-lattice interaction is necessary
to explain ferroelectricity associated with this type of magnetic order.We have
conducted thermal expansion measurements along the a, b, c axes revealing the
existence of strong anisotropic lattice anomalies at T1=7.8 K, the temperature
of the magnetic lock-in transition into a commensurate low-temperature
(reentrant paraelectric) phase. The effect of hydrostatic pressure up to 1.8
GPa on the FE phase is investigated by measuring the dielectric constant and
the FE polarization. The low- temperature commensurate and paraelectric phase
is stabilized and the stability range of the ferroelectric phase is diminished
under pressure.Comment: 2 pages, 3 figures. SCES conference proceedings, houston, TX, 2007.
to be published in Physica
Electronic Structure of Transition-Metal Dicyanamides Me[N(CN)] (Me = Mn, Fe, Co, Ni, Cu)
The electronic structure of Me[N(CN)] (Me=Mn, Fe, Co, Ni, Cu)
molecular magnets has been investigated using x-ray emission spectroscopy (XES)
and x-ray photoelectron spectroscopy (XPS) as well as theoretical
density-functional-based methods. Both theory and experiments show that the top
of the valence band is dominated by Me 3d bands, while a strong hybridization
between C 2p and N 2p states determines the valence band electronic structure
away from the top. The 2p contributions from non-equivalent nitrogen sites have
been identified using resonant inelastic x-ray scattering spectroscopy with the
excitation energy tuned near the N 1s threshold. The binding energy of the Me
3d bands and the hybridization between N 2p and Me 3d states both increase in
going across the row from Me = Mn to Me = Cu. Localization of the Cu 3d states
also leads to weak screening of Cu 2p and 3s states, which accounts for shifts
in the core 2p and 3s spectra of the transition metal atoms. Calculations
indicate that the ground-state magnetic ordering, which varies across the
series is largely dependent on the occupation of the metal 3d shell and that
structural differences in the superexchange pathways for different compounds
play a secondary role.Comment: 20 pages, 11 figures, 2 table
Study of heterogeneous nucleation of eutectic Si in high-purity Al-Si alloys with Sr addition
The official published version can be accessed from the link below - Copyright @ 2010 The Minerals, Metals & Materials Society and ASM InternationalAl-5 wt pct Si master-alloys with controlled Sr and/or P addition/s were produced using super purity Al 99.99 wt pct and Si 99.999 wt pct materials in an arc melter. The master-alloy was melt-spun resulting in the production of thin ribbons. The Al matrix of the ribbons contained entrained Al-Si eutectic droplets that were subsequently investigated. Differential scanning calorimetry, thermodynamic calculations, and transmission electron microscopy techniques were employed to examine the effect of the Sr and P additions on eutectic undercoolings and nucleation phenomenon. Results indicate that, unlike P, Sr does not promote nucleation. Increasing Sr additions depressed the eutectic nucleation temperature. This may be a result of the formation of a Sr phase that could consume or detrimentally affect potent AlP nucleation sites.This work is financially supported by the
Higher Education Commission of Pakistan and managerially supported from the OAD
- …