16 research outputs found

    Universal property of the information entropy in fermionic and bosonic systems

    Full text link
    It is shown that a similar functional form S=a+blnNS=a+b\ln N holds approximately for the information entropy S as function of the number of particles N for atoms, nuclei and atomic clusters (fermionic systems) and correlated boson-atoms in a trap (bosonic systems). It is also seen that rigorous inequalities previously found to hold between S and the kinetic energy T for fermionic systems, hold for bosonic systems as well. It is found that Landsberg's order parameter Ω\Omega is an increasing function of N for the above systems. It is conjectured that the above properties are universal i.e. they do not depend on the kind of constituent particles (fermions or correlated bosons) and the size of the system.Comment: 6 pages, 2 EPS figures, LaTe

    Universal property of the information entropy in atoms, nuclei and atomic clusters

    Get PDF
    The position- and momentum-space information entropies of the electron distributions of atomic clusters are calculated using a Woods-Saxon single particle potential. The same entropies are also calculated for nuclear distributions according to the Skyrme parametrization of the nuclear mean field. It turns out that a similar functional form S=a+b ln N for the entropy as function of the number of particles N holds approximately for atoms, nuclei and atomic clusters. It is conjectured that this is a universal property of a many-fermion system in a mean field. It is also seen that there is an analogy of our expression for S to Boltzmann's thermodynamic entropy S=k ln W.Comment: 3 pages, REVTEX, one figur

    Application of information entropy to nuclei

    Full text link
    Shannon's information entropies in position- and momentum- space and their sum SS are calculated for various ss-pp and ss-dd shell nuclei using a correlated one-body density matrix depending on the harmonic oscillator size b0b_0 and the short range correlation parameter yy which originates from a Jastrow correlation function. It is found that the information entropy sum for a nucleus depends only on the correlation parameter yy through the simple relation S=s0A+s1AyλsAS= s_{0A} + s_{1A} y^{-\lambda_{sA}}, where s0As_{0A}, s1As_{1A} and λsA\lambda_{sA} depend on the mass number AA. A similar approximate expression is also valid for the root mean square radius of the nucleus as function of yy leading to an approximate expression which connects SS with the root mean square radius. Finally, we propose a method to determine the correlation parameter from the above property of SS as well as the linear dependence of SS on the logarithm of the number of nucleons.Comment: 10 pages, 10 EPS figures, RevTeX, Phys.Rev.C accepted for publicatio

    Net Fisher information measure versus ionization potential and dipole polarizability in atoms

    Get PDF
    The net Fisher information measure, defined as the product of position and momentum Fisher information measures and derived from the non-relativistic Hartree-Fock wave functions for atoms with Z=1-102, is found to correlate well with the inverse of the experimental ionization potential. Strong direct correlations of the net Fisher information are also reported for the static dipole polarizability of atoms with Z=1-88. The complexity measure, defined as the ratio of the net Onicescu information measure and net Fisher information, exhibits clearly marked regions corresponding to the periodicity of the atomic shell structure. The reported correlations highlight the need for using the net information measures in addition to either the position or momentum space analogues. With reference to the correlation of the experimental properties considered here, the net Fisher information measure is found to be superior than the net Shannon information entropy.Comment: 16 pages, 6 figure

    A simple method for the evaluation of the information content and complexity in atoms. A proposal for scalability

    Full text link
    We present a very simple method for the calculation of Shannon, Fisher, Onicescu and Tsallis entropies in atoms, as well as SDL and LMC complexity measures, as functions of the atomic number Z. Fractional occupation probabilities of electrons in atomic orbitals are employed, instead of the more complicated continuous electron probability densities in position and momentum spaces, used so far in the literature. Our main conclusions are compatible with the results of more sophisticated approaches and correlate fairly with experimental data. We obtain for the Tsallis entropic index the value q=1.031, which shows that atoms are very close to extensivity. A practical way towards scalability of the quantification of complexity for systems with more components than the atom is indicated. We also discuss the issue if the complexity of the electronic structure of atoms increases with Z. A Pair of Order-Disorder Indices (PODI), which can be introduced for any quantum many-body system, is evaluated in atoms. We conclude that "atoms are ordered systems, which do not grow in complexity as Z increases".Comment: Preprint, 25 pages, 15 figures, 1 Tabl

    Configuration Complexities of Hydrogenic Atoms

    Full text link
    The Fisher-Shannon and Cramer-Rao information measures, and the LMC-like or shape complexity (i.e., the disequilibrium times the Shannon entropic power) of hydrogenic stationary states are investigated in both position and momentum spaces. First, it is shown that not only the Fisher information and the variance (then, the Cramer-Rao measure) but also the disequilibrium associated to the quantum-mechanical probability density can be explicitly expressed in terms of the three quantum numbers (n, l, m) of the corresponding state. Second, the three composite measures mentioned above are analytically, numerically and physically discussed for both ground and excited states. It is observed, in particular, that these configuration complexities do not depend on the nuclear charge Z. Moreover, the Fisher-Shannon measure is shown to quadratically depend on the principal quantum number n. Finally, sharp upper bounds to the Fisher-Shannon measure and the shape complexity of a general hydrogenic orbital are given in terms of the quantum numbers.Comment: 22 pages, 7 figures, accepted i

    Complexity and neutron stars structure

    Full text link
    We apply the statistical measure of complexity introduced by Lopez-Ruiz, Mancini and Calbet to neutron stars structure. Neutron stars is a classical example where the gravitational field and quantum behavior are combined and produce a macroscopic dense object. Actually, we continue the recent application of Sanudo and Pacheco to white dwarfs structure. We concentrate our study on the connection between complexity and neutron star properties, like maximum mass and the corresponding radius, applying a specific set of realistic equation of states. Moreover, the effect of the strength of the gravitational field on the neutron star structure and consequently on the complexity measure is also investigated. It is seen that neutron stars, consistent with astronomical observations so far, are ordered systems (low complexity), which cannot grow in complexity as their mass increases. This is a result of the interplay of gravity, the short-range nuclear force and the very short-range weak interaction.Comment: Preprint, 23 pages, 28 figure
    corecore