13 research outputs found

    Sarcoptic mange changes bacterial and fungal microbiota of bare-nosed wombats (Vombatus ursinus)

    Get PDF
    Published online: 13 September 2022Background: Sarcoptes scabiei is globally distributed and one of the most impactful mammalian ectoparasites. Sarcoptic mange, caused by infection with S. scabiei, causes disruption of the epidermis and its bacterial microbiota, but its effects on host fungal microbiota and on the microbiota of marsupials in general have not been studied. Here, we (i) examine bacterial and fungal microbiota changes associated with mange in wild bare-nosed wombats (BNWs) and (ii) evaluate whether opportunistic pathogens are potentiated by S. scabiei infection in this species. Methods: Using Amplicon Sequencing of the 16S rRNA and ITS2 rDNA genes, we detected skin microbiota changes of the bare-nosed wombat (Vombatus ursinus). We compared the alpha and beta diversity among healthy, moderate, and severe disease states using ANOVA and PERMANOVA with nesting. Lastly, we identified taxa that differed between disease states using analysis of composition of microbes (ANCOM) testing. Results: We detected significant changes in the microbial communities and diversity with mange in BNWs. Severely affected BNWs had lower amplicon sequence variant (ASV) richness compared to that of healthy individuals, and the microbial communities were significantly different between disease states with higher relative abundance of potentially pathogenic microbial taxa in mange-affected BNWs including Staphylococcus sciuri, Corynebacterium spp., Brevibacterium spp., Brachybacterium spp., and Pseudogymnascus spp. and Debaryomyces spp. Conclusion: This study represents the first investigation of microbial changes in association with sarcoptic mange in a marsupial host, as well as the first investigation of fungal microbial changes on the skin of any host suffering from sarcoptic mange. Our results are broadly consistent with bacterial microbiota changes observed in humans, pigs, canids, and Iberian ibex, suggesting the epidermal microbial impacts of mange may be generalisable across host species. We recommend that future studies investigating skin microbiota changes include both bacterial and fungal data to gain a more complete picture of the effects of sarcoptic mange.Christina Næsborg, Nielsen, Raphael Eisenhofer, Tamieka A. Fraser, Vicky Wilkinson, Christopher P. Burridge and Scott Carve

    Population genomics of a predatory mammal reveals patterns of decline and impacts of exposure to toxic toads

    Get PDF
    Mammal declines across northern Australia are one of the major biodiversity loss events occurring globally. There has been no regional assessment of the implications of these species declines for genomic diversity. To address this, we conducted a species-wide assessment of genomic diversity in the northern quoll (Dasyurus hallucatus), an Endangered marsupial carnivore. We used next generation sequencing methods to genotype 10,191 single nucleotide polymorphisms (SNPs) in 352 individuals from across a 3220-km length of the continent, investigating patterns of population genomic structure and diversity, and identifying loci showing signals of putative selection. We found strong heterogeneity in the distribution of genomic diversity across the continent, characterized by (i) biogeographical barriers driving hierarchical population structure through long-term isolation, and (ii) severe reductions in diversity resulting from population declines, exacerbated by the spread of introduced toxic cane toads (Rhinella marina). These results warn of a large ongoing loss of genomic diversity and associated adaptive capacity as mammals decline across northern Australia. Encouragingly, populations of the northern quoll established on toad-free islands by translocations appear to have maintained most of the initial genomic diversity after 16 years. By mapping patterns of genomic diversity within and among populations, and investigating these patterns in the context of population declines, we can provide conservation managers with data critical to informed decision-making. This includes the identification of populations that are candidates for genetic management, the importance of remnant island and insurance/translocated populations for the conservation of genetic diversity, and the characterization of putative evolutionarily significant units

    Intrinsic factors drive spatial genetic variation in a highly vagile species, the wedge-tailed eagle Aquila audax, in Tasmania

    No full text
    Knowledge of dispersal in a species, both its quantity and the factors influencing it, are crucial for our understanding of ecology and evolution, and for species conservation. Here we quantified and formally assessed the potential contribution of extrinsic factors on individual dispersal in the threatened Tasmanian population of wedge-tailed eagle Aquila audax. As successful breeding by these individuals appears strongly related to habitat, we tested the effect of landscape around sampling sites on genetic diversity and spatial genetic variation, as these are influenced by patterns of dispersal. Similarly, we also tested whether habitat intervening sampling sites could explain spatial genetic variation. Twenty microsatellites were scored, but only a small proportion of spatial genetic variation (4.6%) could be explained by extrinsic factors, namely habitat suitability and elevation between sites. However, significant clinal genetic variation was evident across Tasmania, which we explain by intrinsic factors, likely high natal philopatry and occasional long-distance dispersal. This study demonstrates that spatial genetic variation can be detected in highly vagile species at spatial scales that are small relative to putative dispersal ability, although here there was no substantial relationship with landscape factors tested

    A hybrid zone and bidirectional introgression between two catadromous species: Australian bass Macquaria novemaculeata and estuary perch Macquaria colonorum

    No full text
    The presence and distribution of hybrid individuals and the existence of a hybrid zone between the catadromous Australian bass Macquaria novemaculeata and estuary perch Macquaria colonorum were investigated throughout the range of both species in Australia. Bayesian analyses and genotypic simulations identified 140 putative hybrids (11.5% of the total sample) with varying levels of introgression. Most hybrids were observed in an area extending from the Snowy River to the Albert River suggesting a hybrid zone in the eastern Bass Strait region. Sixteen hybrids, however, were found outside this zone, possibly reflecting the movement of hybrid offspring between estuaries or their inadvertent release during fish stocking programmes. Biparental backcrossing was found to occur suggesting that hybrids were fertile. These results have implications for the management of the extensive stocking programme in M. novemaculeata and for understanding the potential role of habitat degradation and reduced water flow in facilitating hybridization in species with migratory life histories

    Rainfall and topography predict gene flow among populations of the declining northern quoll (Dasyurus hallucatus)

    No full text
    Landscape attributes often shape the spatial genetic structure of species. As the maintenance of genetic connectivity is increasingly a conservation priority, the identification of landscape features that influence connectivity can inform targeted management strategies. The northern quoll (Dasyurus hallucatus) is a carnivorous marsupial that has experienced dramatic population declines in recent decades. To inform management of surviving D. hallucatus populations across north-western Australia we examined the genetic structure of populations, and identified landscape features that influence gene flow within the Kimberley region. We sampled 249 individuals from 28 populations in three regions of north-western Australia, including the Kimberley, Pilbara and Kakadu. Genetic structuring was evident between the three regions and to a lesser extent between the north and central Kimberley. Landscape genetic analysis of Kimberley populations suggest this structuring may be due in part to the indirect effects of differences in rainfall between these two areas. Also, D. hallucatus populations with large areas of open habitat between them tended to be more genetically similar. Managing threats such as the occurrence of intense and frequent fires, and the density of introduced herbivores, could support the persistence of D. hallucatus populations, particularly in areas with high rainfall and flat terrain, where greater genetic connectivity confers a better chance of long-term population survival
    corecore