676 research outputs found

    Subtherapeutic triazole concentrations as result of a drug-drug interaction with lumacaftor/ivacaftor

    Get PDF
    Lumacaftor/ivacaftor (Orkambi®, LUM/IVA) is indicated for the treatment of cystic fibrosis (CF) patients aged ≥ 2 years with homozygous F580del mutation in the CFTR gene. Triazole fungal agents are used to treat fungal disease in CF. The use of triazoles is limited by pharmacokinetic challenges, such as drug-drug interactions. The most notable drug-drug interaction between triazoles and LUM/IVA is due to strong induction of CYP3A4 and UGT by LUM. In this real-world retrospective observational study, we described the effect of LUM/IVA on the trough concentration of triazoles. Concomitant use of LUM/IVA with itraconazole, posaconazole or voriconazole resulted in subtherapeutic triazole levels in 76% of the plasma samples. In comparison, in patients with triazole agents without LUM/IVA only 30.6% of the plasma samples resulted in subtherapeutic concentrations. Subtherapeutic plasma concentrations of triazoles should be considered in CF patients on LUM/IVA and further research is warranted for other dosing strategies and alternative antifungal therapy.</p

    Subtherapeutic triazole concentrations as result of a drug-drug interaction with lumacaftor/ivacaftor

    Get PDF
    Lumacaftor/ivacaftor (Orkambi®, LUM/IVA) is indicated for the treatment of cystic fibrosis (CF) patients aged ≥ 2 years with homozygous F580del mutation in the CFTR gene. Triazole fungal agents are used to treat fungal disease in CF. The use of triazoles is limited by pharmacokinetic challenges, such as drug-drug interactions. The most notable drug-drug interaction between triazoles and LUM/IVA is due to strong induction of CYP3A4 and UGT by LUM. In this real-world retrospective observational study, we described the effect of LUM/IVA on the trough concentration of triazoles. Concomitant use of LUM/IVA with itraconazole, posaconazole or voriconazole resulted in subtherapeutic triazole levels in 76% of the plasma samples. In comparison, in patients with triazole agents without LUM/IVA only 30.6% of the plasma samples resulted in subtherapeutic concentrations. Subtherapeutic plasma concentrations of triazoles should be considered in CF patients on LUM/IVA and further research is warranted for other dosing strategies and alternative antifungal therapy.</p

    Dried blood spot analysis for the quantification of vancomycin and creatinine using liquid chromatography – tandem mass spectrometry:Method development and validation

    Get PDF
    Background: Vancomycin is a widely used antibiotic for the treatment of gram-positive bacterial infections, especially for methicillin-resistant Staphylococcus aureus (MRSA) infections. Due to a small therapeutic range and large inter-patient variability, therapeutic drug monitoring (TDM) of vancomycin is required to minimize toxicity and maximize treatment efficacy. Venous blood sampling is mostly applied for TDM of vancomycin, although this widely used sampling method is more invasive compared to less painful alternatives, such as the dried blood spot (DBS) method, which can be performed at home. Method: We developed an UPLC-MS/MS method for the quantification of vancomycin and creatinine in DBS. A fast sample preparation and short analysis run time of 5.2 min were applied, which makes this method highly suitable for clinical settings. Validation was performed according to international (FDA and EMA) guidelines. Results: The validated concentration range was found linear for creatinine from 41.8 µmol/L to 722 µmol/L and for vancomycin from 3.8 mg/L to 76.6 mg/L (r2 &gt; 0.990) and the inaccuracies, imprecisions, hematocrit effects, and recoveries were &lt; 15 % for both compounds. No significant carryover effect was observed. Conclusion: Hence, we successfully validated a quantification method for the simultaneous determination of creatinine and vancomycin in DBS.</p

    Extending the repertoire of microsatellite markers for genetic linkage mapping and germplasm

    Get PDF
    To increase the number of polymorphic simple sequence repeat markers (SSRs) in chickpea, a genomic library was constructed, and the SSRs derived from this approach are characterized. A genomic DNA library from the chickpea genotype ICC 4958 was constructed after digesting total DNA of ICC 4958 with MBO/Sau and TaqI at University of Frankfurt, Germany. The study increases the existing SSR repertoire in chickpea, which will help to enhance the coverage of linkage maps especially in intraspecific crosses where marker polymorphism is found to be very less

    Body composition is associated with tacrolimus pharmacokinetics in kidney transplant recipients

    Get PDF
    PURPOSE: A population pharmacokinetic (popPK) model may be used to improve tacrolimus dosing and minimize under- and overexposure in kidney transplant recipients. It is unknown how body composition parameters relate to tacrolimus pharmacokinetics and which parameter correlates best with tacrolimus exposure. The aims of this study were to investigate which body composition parameter has the best association with the pharmacokinetics of tacrolimus and to describe this relationship in a popPK model. METHODS: Body composition was assessed using bio-impedance spectroscopy (BIS). Pharmacokinetic analysis was performed using nonlinear mixed effects modeling (NONMEM). Lean tissue mass, adipose tissue mass, over-hydration, and phase angle were measured with BIS and then evaluated as covariates. The final popPK model was evaluated using goodness-of-fit plots, visual predictive checks, and a bootstrap analysis. RESULTS: In 46 kidney transplant recipients, 284 tacrolimus concentrations were measured. The base model without body composition parameters included age, plasma albumin, plasma creatinine, CYP3A4 and CYP3A5 genotypes, and hematocrit as covariates. After full forward inclusion and backward elimination, only the effect of the phase angle on clearance (dOFV =  − 13.406; p < 0.01) was included in the final model. Phase angle was positively correlated with tacrolimus clearance. The inter-individual variability decreased from 41.7% in the base model to 34.2% in the final model. The model was successfully validated. CONCLUSION: The phase angle is the bio-impedance spectroscopic parameter that correlates best with tacrolimus pharmacokinetics. Incorporation of the phase angle in a popPK model can improve the prediction of an individual’s tacrolimus dose requirement after transplantation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00228-022-03323-0

    Individualized dosing algorithms for tacrolimus in kidney transplant recipients:current status and unmet needs

    Get PDF
    Introduction: Tacrolimus is a potent immunosuppressive drug with many side effects including nephrotoxicity and post-transplant diabetes mellitus. To limit its toxicity, therapeutic drug monitoring (TDM) is performed. However, tacrolimus’ pharmacokinetics are highly variable within and between individuals, which complicates their clinical management. Despite TDM, many kidney transplant recipients will experience under- or overexposure to tacrolimus. Therefore, dosing algorithms have been developed to limit the time a patient is exposed to off-target concentrations. Areas Covered: Tacrolimus starting dose algorithms and models for follow-up doses developed and/or tested since 2015, encompassing both adult and pediatric populations. Literature was searched in different databases, i.e. Embase, PubMed, Web of Science, Cochrane Register, and Google Scholar, from inception to February 2023 Expert Opinion: Many algorithms have been developed, but few have been prospectively evaluated. These performed better than bodyweight-based starting doses, regarding the time a patient is exposed to off-target tacrolimus concentrations. No benefit in reduced tacrolimus toxicity has yet been observed. Most algorithms were developed from small datasets, contained only a few tacrolimus concentrations per person, and were not externally validated. Moreover, other matrices should be considered which might better correlate with tacrolimus toxicity than the whole-blood concentration, e.g. unbound plasma or intra-lymphocytic tacrolimus concentrations.</p

    Population Pharmacokinetic Modelling of Intravenous Immunoglobulin Treatment in Patients with Guillain–Barré Syndrome

    Get PDF
    BACKGROUND AND OBJECTIVE: Intravenous immunoglobulin (IVIg) at a standard dosage is the treatment of choice for Guillain–Barré syndrome. The pharmacokinetics, however, is highly variable between patients, and a rapid clearance of IVIg is associated with poor recovery. We aimed to develop a model to predict the pharmacokinetics of a standard 5-day IVIg course (0.4 g/kg/day) in patients with Guillain–Barré syndrome. METHODS: Non-linear mixed-effects modelling software (NONMEM(®)) was used to construct a pharmacokinetic model based on a model-building cohort of 177 patients with Guillain–Barré syndrome, with a total of 589 sequential serum samples tested for total immunoglobulin G (IgG) levels, and evaluated on an independent validation cohort that consisted of 177 patients with Guillain–Barré syndrome with 689 sequential serum samples. RESULTS: The final two-compartment model accurately described the daily increment in serum IgG levels during a standard IVIg course; the initial rapid fall and then a gradual decline to steady-state levels thereafter. The covariates that increased IgG clearance were a more severe disease (as indicated by the Guillain–Barré syndrome disability score) and concomitant methylprednisolone treatment. When the current dosing regimen was simulated, the percentage of patients who reached a target ∆IgG > 7.3 g/L at 2 weeks decreased from 74% in mildly affected patients to only 33% in the most severely affected and mechanically ventilated patients (Guillain–Barré syndrome disability score of 5). CONCLUSIONS: This is the first population-pharmacokinetic model for standard IVIg treatment in Guillain–Barré syndrome. The model provides a new tool to predict the pharmacokinetics of alternative regimens of IVIg in Guillain–Barré syndrome to design future trials and personalise treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40262-022-01136-z

    A Compact Beam Stop for a Rare Kaon Decay Experiment

    Get PDF
    We describe the development and testing of a novel beam stop for use in a rare kaon decay experiment at the Brookhaven AGS. The beam stop is located inside a dipole spectrometer magnet in close proximity to straw drift chambers and intercepts a high-intensity neutral hadron beam. The design process, involving both Monte Carlo simulations and beam tests of alternative beam-stop shielding arrangements, had the goal of minimizing the leakage of particles from the beam stop and the resulting hit rates in detectors, while preserving maximum acceptance for events of interest. The beam tests consisted of measurements of rates in drift chambers, scintilation counter hodoscopes, a gas threshold Cherenkov counter, and a lead glass array. Measurements were also made with a set of specialized detectors which were sensitive to low-energy neutrons, photons, and charged particles. Comparisons are made between these measurements and a detailed Monte Carlo simulation.Comment: 39 pages, 14 figures, submitted to Nuclear Instruments and Method
    • …
    corecore