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Dennis A. Hesselinka,b and Brenda C.M. de Winterc,d 

aErasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; bDepartment of Internal Medicine, Division of 
Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; cErasmus MC, Rotterdam Clinical 
Pharmacometrics Group, Rotterdam, the Netherlands; dDepartment of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, 
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ABSTRACT
Introduction: Tacrolimus is a potent immunosuppressive drug with many side effects including 
nephrotoxicity and post-transplant diabetes mellitus. To limit its toxicity, therapeutic drug monitoring 
(TDM) is performed. However, tacrolimus’ pharmacokinetics are highly variable within and between 
individuals, which complicates their clinical management. Despite TDM, many kidney transplant reci
pients will experience under- or overexposure to tacrolimus. Therefore, dosing algorithms have been 
developed to limit the time a patient is exposed to off-target concentrations.
Areas Covered: Tacrolimus starting dose algorithms and models for follow-up doses developed and/or 
tested since 2015, encompassing both adult and pediatric populations. Literature was searched in 
different databases, i.e. Embase, PubMed, Web of Science, Cochrane Register, and Google Scholar, from 
inception to February 2023
Expert Opinion: Many algorithms have been developed, but few have been prospectively evaluated. 
These performed better than bodyweight-based starting doses, regarding the time a patient is exposed 
to off-target tacrolimus concentrations. No benefit in reduced tacrolimus toxicity has yet been 
observed. Most algorithms were developed from small datasets, contained only a few tacrolimus 
concentrations per person, and were not externally validated. Moreover, other matrices should be 
considered which might better correlate with tacrolimus toxicity than the whole-blood concentration, 
e.g. unbound plasma or intra-lymphocytic tacrolimus concentrations.
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1. Introduction

Tacrolimus is the most frequently used immunosuppressant 
for the prevention of acute rejection after kidney transplanta
tion [1]. The target of tacrolimus (formerly known by its inves
tigational name FK-506) is the immunophilin FKBP-12 FK506- 
binding protein (FKBP-12). The tacrolimus-FKBP-12 complex 
inhibits the phosphatase activity of the enzyme calcineurin, 
which is present in T lymphocytes [2]. This results in suppres
sion of T lymphocyte growth factors such as interleukin-2, and 
the inhibition of T lymphocyte activation and proliferation [3]. 
Through inhibition of the formation of T helper lymphocytes, 
the B lymphocyte response can be prevented [4]. Although 
tacrolimus is highly effective, it is also toxic. Side effects 
include nephrotoxicity (both acute and chronic), neurotoxicity, 
hypertension, opportunistic infections and post-transplant dia
betes mellitus (PTDM). Acute rejection and tacrolimus-induced 
toxicity seem to have a drug-concentration dependent rela
tionship, where low pre-dose concentrations are associated 
with rejection and overexposure to toxicity [5], although this 
has not been a universal finding [6]. To balance the efficacy 

and toxicity of tacrolimus, which is complicated by the highly 
variable intra- and inter-patient pharmacokinetics (PK), thera
peutic drug monitoring (TDM) is routinely performed for tacro
limus targeting its so-called ‘therapeutic range’ [7]. The 
parameter most widely used for TDM is the tacrolimus whole- 
blood pre-dose concentration (C0) [8].

1.1. Tacrolimus’ pharmacokinetics

Following oral administration, tacrolimus is absorbed in the 
small intestine and colon and subsequently undergoes first- 
pass metabolism in the intestinal wall. In the circulation, 
tacrolimus binds excessively, around 95%, to erythrocytes as 
they have a high concentration of the tacrolimus receptor 
FKBP-12. In plasma, the majority of tacrolimus, around 90%, 
is bound to plasma proteins, such as albumin and α1-acid 
glycoprotein [5]. Intracellular concentrations of tacrolimus in 
enterocytes are lowered by efflux back into the intestinal 
lumen, mediated by the drug transporter P-glycoprotein 
(encoded by the ABCB1 gene). P-glycoprotein is present in
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enterocytes, which limits the bioavailability of tacrolimus, and 
in lymphocyte membranes, where it limits lymphocyte inhibi
tion [9]. Tacrolimus is mostly metabolized in the liver by the 
cytochrome P450 (CYP) enzyme system (CYP3A4 and CYP3A5) 
[10] and has a very low hepatic extraction ratio (3%) with 
a clearance (CL) of approximately 2 L/h [11]. The main route 
of tacrolimus excretion is biliary (95%), whereas renal excre
tion accounts for only ~3% of unchanged tacrolimus [5].

Erythrocyte-bound tacrolimus is thought not to be thera
peutically active since only free drug molecules are able to 
cross cellular membranes and bind to its receptors at the 
target site [12,13]. The unbound tacrolimus fraction in plasma 
(normally <0.1% compared to whole-blood) is considered 
therapeutically active [14]. Hypoalbuminemia may influence 
the unbound fraction of tacrolimus (and is frequent in kidney 
transplant recipients) [15], whereas hematocrit is believed not 
to influence the unbound fraction [16]. The intracellular tacro
limus concentration in T lymphocytes might better reflect the 
truly pharmacologically active fraction [17,18], since tacrolimus 
is used to inhibit T lymphocytes [19].

1.2. Intra- and inter-individual variability

In most kidney transplant recipients, absorption of tacroli
mus occurs fast with reported peak whole-blood concentra
tions within 0.5–2 hours after ingestion [20]. However, there 
exists a large inter-patient variability in the tacrolimus 
absorption rate, resulting in a flat absorption profile, an 
extended lag time (e.g. the time it takes for absorption to 
start after drug ingestion) or in secondary peaks of absorp
tion, with bioavailability (F) ranging from ~5% to 95% 
(reviewed in [5]). Drug efflux transporters [9], tacrolimus 
formulation type, fasting state [21] and enteric metabolism 

(i.e. diarrhea [22,23]) affect absorption. The effect of dia
betes mellitus on tacrolimus’ PKs is less-clearly defined 
and may relate to altered adipose tissue blood flow, muscle 
blood flow and delayed gastric emptying [21,24]. 
Concerning the volume of distribution (Vd), a wide range 
has been observed (from 0.97 to 104.8 L/kg) which is 
explained by the high lipophilicity of tacrolimus (reviewed 
in [5]).

Single-nucleotide polymorphisms (SNPs) in genes encod
ing for drug transporting proteins and drug metabolizing 
enzymes (reviewed in [25]), have their effect on the meta
bolism of tacrolimus and its inter-individual variability. Drug 
transporting proteins for tacrolimus (reviewed in [26]) can 
be classified into two super families; SLCs (solute carrier 
transporters) and ABCs (ATP-binding cassette transporters). 
The most extensively studied intestinal drug efflux pump 
P-glycoprotein might partly cause tacrolimus’ low oral bioa
vailability, in addition to its importance for the distribution 
of tacrolimus [27]. However, the contribution of all the 
ABCB1 gene SNPs on the protein’s function remains unclear 
[25]. Regarding drug metabolizing enzymes, about 40–50% 
of the inter-patient variability in tacrolimus dose require
ment can be explained by CYP3A5 gene polymorphisms 
[28,29]. Individuals carrying the CYP3A5*1 allele, CYP3A5 
expressers, require a 50% higher tacrolimus dose compared 
to individuals homozygous for the CYP3A5*3 allele, CYP3A5 
non-expressers [30]. Other, less frequent, variant alleles 
include CYP3A5*6 and CYP3A5*7, which are both similar in 
function compared to the CYP3A5*3 allele, e.g. loss of pro
tein function [31]. Regarding the CYP3A4 SNP, individuals 
carrying the CYP3A4*22 allele, which is associated with 
reduced CYP3A4 enzymatic activity, require a 20% lower 
tacrolimus dose compared to individuals carrying the 
CYP3A4*1 allele [32–34]. Besides inter-individual differences 
in ABCB1 and CYP3A activity, the P450 oxidoreductase (POR) 
enzyme is thought to explain some of the residual varia
bility in tacrolimus CL. It was suggested that the POR*28 
SNP contributes to increased tacrolimus metabolism, and 
thus a higher dose requirement in CYP3A5 expressers 
[35–38].

Numerous other factors have been associated with the 
apparent whole-blood clearance (CL/F) of tacrolimus. 
Increasing age of the recipient was demonstrated to have an 
effect on tacrolimus’ PKs, resulting in a decreased CL/F [39,40]. 
Hematocrit could predict variability in tacrolimus whole-blood 
concentrations but is also highly variable and increases sub
stantially after kidney transplantation [16]. The effects of eth
nicity are often tied to the different prevalence of CYP3A gene 
SNPs across different ethnicities [25]. These differences can 
lead to lower tacrolimus pre-dose concentrations and reduced 
graft survival in African American recipients compared to their 
Caucasian counterparts [25,31]. The circadian rhythm was also 
demonstrated to influence tacrolimus CL/F, with a higher C0 

and area-under the concentration versus time-curve (AUC) 
after the morning dose compared to the night dose [41–43]. 
Other factors include drug–drug interactions [44], time after 
transplantation, liver function, and bodyweight (BW).

Article highlights

● Since the first developed tacrolimus starting dose algorithm, many 
have been developed for the starting dose of tacrolimus. For the 
follow-up doses of tacrolimus by use of model informed precision 
dosing, many models have been developed. Hematocrit and CYP3A 
genotype are incorporated in most of these models. However, less 
than half of the models are externally validated and/or prospectively 
tested.

● The few prospectively tested starting dose algorithms performed 
better than conventional bodyweight-dosing regarding the time for 
a patient to reach the tacrolimus target concentration.

● In order to achieve physician acceptance of calculating the starting- 
and/or follow-up dose with a model, the developed models need to 
be externally validated (if not done yet), tested in a (randomized) 
clinical trial and have a good user interface.

● Considering clinical outcomes of tacrolimus, allograft rejection and 
toxicity (e.g. the incidence of infections and onset of post- 
transplantation diabetes mellitus), no difference was observed 
between algorithm-based dosing and conventional BW-dosing with 
TDM.

● Other covariates, like unbound plasma or intra-lymphocytic tacroli
mus concentrations, should be considered, which might better cor
relate with tacrolimus toxicity than the whole-blood concentration. In 
order to test and implement dosing algorithms for these concentra
tions in the clinic, target ranges first have to be determined.
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However, BW alone is known to correlate poorly with the 
required tacrolimus dose and overweight patients are at risk 
of overexposure [39,45–47].

1.3. Dosing algorithms

According to the Summary of Product Characteristics, the tacro
limus starting dose should commence at a dose of 0.20–0.30 mg/ 
kg BW/day [48,49], despite the known poor correlation between 
BW and CL/F. First-steady state following BW-based dosing is 2– 
4 days (five times its half-life) after initiation of tacrolimus treat
ment [50]. Several studies demonstrated that only 18.5–37.4% of 
the recipients were within the target range at first steady-state 
following BW-based dosing [51–53]. Furthermore, despite the 
use of TDM, it can take as much as 3 weeks for a patient to 
reach the target concentration range [52,53]. In order to limit the 
time of exposure to tacrolimus concentrations outside the target 
range, dosing algorithms have been developed over the past 
decade. A dosing algorithm is able to provide calculations based 
on medical data to define the need for a reduced or increased 
dose of tacrolimus rather than a standard BW-based dose. 
Starting dose algorithms could aid physicians in individualizing 
a patient’s dose requirement based on numerous variables 
instead of BW alone, whereas maintenance dose algorithms 
could also take numerous variables into account in comparison 
to TDM.

2. Methods

Our research group previously published an overview of 
dosing algorithms for initiation of the immunosuppressive 

drug ciclosporin, tacrolimus and mycophenolic acid in solid 
organ transplant recipients [54]. The present paper aims to 
provide a comprehensive overview of the newly developed 
and prospectively tested population PK (popPK) models for 
tacrolimus since then (2015). A literature search was per
formed using Embase, Medline (Ovid), Web of Science Core 
Collection (Web of Knowledge), Cochrane (Wiley) and 
Google Scholar, from inception to February 2023 for this 
review. Search terms included ‘kidney transplantation,’ 
‘tacrolimus,’ ‘dose-response relationship,’ ‘pharmacokinetics’ 
and ‘models.’ The full literature search is described in the 
supplementary information. This search retrieved n = 515 
articles, of which duplicates were removed (n = 4), and arti
cles were excluded based on title-abstract screening (n =  
391). Of the remaining 120 articles, 95 were excluded for 
the following reasons; only the abstract was available (n =  
31), it was a review (n = 20), no popPK modeling was per
formed (n = 31), other transplant recipients than kidney (n =  
3), or the article was discussed in the previously published 
overview (n = 10). Thus, n = 25 articles were included (adults 
n = 18, pediatrics n = 4, trials prospectively testing dosing 
algorithms n = 3) (Figure 1).

This review is divided in sections considering adult and 
pediatric kidney transplant recipients, and these sections 
are further subdivided to discuss covariates that are incor
porated in the identified popPK models and to review 
trials that tested these popPK models prospectively. 
Specifically for adults, we tested the popPK models on 
our database of kidney transplant recipients transplanted 
in the Erasmus MC consisting of n = 59 kidney transplant 
recipients [55].

Figure 1. Flowchart of the literature search.
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Table 1. Tacrolimus starting dose algorithms for adult kidney transplant recipients.

Author Patients Methods Covariates tested Final algorithm

Total daily 
dose  

(mg/day)a Main findings

Alqahtani 
et al. 
(2021) 
[56]

● 139 de novo 
patients, Saudi 
population

● Retrospective 
cohort

● Oral twice- 
daily 
formulation

● Sampling: 149 C0, 
unknown sampling 
period

● PK analysis: Monolix® 
software, one- 
compartment model 
with linear absorption 
and elimination

● Validation: internal 
(VPC)

Age, albumin, ALT, AST, 
bilirubin total, BW, 
creat, eGFR, sex, TDD

Dose = 9.1 � [AST/ 
22.2]−0.128 � 0.350

3.2 mg/day 
(2.6–3.4)b

Liver function has 
a negative correlation 
with tacrolimus 
clearance

Andreu 
et al. 
(2017) 
[57]

● 304 de novo 
patients, 
Caucasian 
population

● Retrospective 
cohort

● Oral twice- 
daily 
formulation

● Sampling: 1562 C0 (from 
297 patients) and 1891 
samples from 329 PK 
profiles (7 patients; pre- 
dose, 15 and 30  
minutes, 1–4, 6, 8 and 
12 hours post-dose) 
at day 7, day 15, month 
1, 3, 6, and 12

● PK analysis: NONMEM®, 
two-compartment 
model with first-order 
absorption

● Validation: internal 
(bootstrap, VPC, simula
tions) and external (59 
patients; independent 
cohort)

Age, ALT, AST, BMI, BW, 
CYP3A4, CYP3A5, Hb, 
HCT, sex

c Dose = [20.5, if EM] or 
[12.5, if IM] or [9.1, if 
PM] � [16.1, if HCT 
45%] or [21.7, if HCT 
33%] – [0.205 if age 
≥63 years] � 0.350

4.2 mg/day 
(2.8–7.6)

Extensive metabolizers 
(combination of 
CYP3A5*1 carriers and 
CYP3A4*22 non- 
carriers) require the 
highest dose for 
a given age and 
hematocrit

Andrews 
et al. 
(2019) 
[58]

● 337 de novo 
patients, 
Caucasian 
population

● Prospective 
cohort

● Oral twice- 
daily 
formulation

● Sampling: 3661 C0 (from 
237 patients) and 866 
samples from PK 
profiles (100 patients; 
pre-dose, 1–6 hours 
post-dose) up to 3  
months post- 
transplantation

● PK analysis: NONMEM®, 
two-compartment 
model with first-order 
absorption

● Validation: internal 
(bootstrap, VPC, simula
tions) and external (304 
patients; independent 
cohort), simulation trial

Age, ABCB1, albumin, AST, 
bilirubin, BMI, BSA, BW, 
comedication, creat, 
CRP, CYP3A4, CYP3A5, 
DGF, eGFR, ethnicity, fat 
mass, HCT, height, HLA 
mismatch, LBW, number 
of previous kidney 
transplant, POD, POR, 
PRA, primary kidney 
disease, total protein, 
renal replacement 
therapy before 
transplant, sex

Dose = 22.5 � [1.0, if 
CYP3A5*3/*3] or [1.62, if 
CYP3A5*1/*3 or 
CYP3A5*1/*1] � [1.0, if 
CYP3A4*1 or unknown] 
or [0.814, if CYP3A4*22] 
� [Age/56]−0.50 � [BSA/ 
1.93]0.72 � 0.350

8.0 mg/day 
(4.8–17.6)

CYP3A5 expressers 
(CYP3A5*1/*3 or 
CYP3A5*1/*1), patients 
younger than 56 years 
and those with 
a higher body surface 
area (>1.93 m2) require 
a higher tacrolimus 
starting dose. Patients 
carrying the 
CYP3A4*22 allele 
require a lower 
starting dose

Ben-Fredj 
et al. 
(2020) 
[59]

● 77 patients, 
Tunisian 
population

● Cross-sectional 
cohort

● Oral twice- 
daily 
formulation

● Sampling: 500 C0, days 
1–4460 post-transplant 
(median 518 days)

● PK analysis: SPSS 
sofware®

● Validation: external (25 
patients; split original 
dataset)

Age, ATG induction 
therapy, BW, CYP3A4, 
CYP3A5, POD, target 
range, sex, simulect

Dose = −2.725 – [10−3 �
POD] + [0.09 � BW] +  
[1.40, if induction therapy 
with ATG] + [2.09, if 
CYP3A4*1B allele] + [0.88 
� Sex] + [0.05 � Age] +  
[1.10, if not CYP3A4*22 
allele] + [2.30, if target C0 

10–15]

11.6 mg/day 
(7.6–15.5)

Patients receiving 
induction therapy with 
ATG, patients carrying 
the CYP3A4*1B allele, 
older patients and 
males require a higher 
tacrolimus starting 
dose

(Continued )
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Table 1. (Continued). 

Author Patients Methods Covariates tested Final algorithm

Total daily 
dose  

(mg/day)a Main findings

Francke 
et al. 
(2022) 
[60]

● 46 de novo 
patients, 
Caucasian 
population

● Clinical trial
● Oral twice- 

daily 
formulation

● Sampling: 284 C0 in first 
3 weeks post- 
transplantation, bio- 
impedance 
spectroscopy once per 
patient within 24 hours 
before or 3 days post- 
transplantation

● PK analysis: NONMEM®, 
previously developed 
two-compartment 
model with first-order 
elimination and absorp
tion with lag time [48]

● Validation: internal 
(bootstrap, VPC, simula
tion), simulation trial

Measured with bio- 
impedance 
spectroscopy: adipose 
tissue mass, fat tissue 
index, lean tissue index, 
lean tissue mass, over- 
hydration, PA 

Estimated: adipose tissue 
mass, BMI, BSA, ideal 
bodyweight, lean tissue 
mass

Dose = 26.1 � [1.0, if 
CYP3A5*3/*3] or [1.631, 
if CYP3A5*1/*3 or 
CYP3A5*1/*1] � [1.0, if 
CYP3A4*1 or unknown] 
or [0.814, if CYP3A4*22] 
� [Age/56]−0.43 �

[Albumin/42]0.43 �
[Creat/135]−0.14 � [HCT/ 
0.34]−0.76 � [PA/4.8]1.22 

� 0.350

Not applicable CYP3A5 expressers 
(CYP3A5*1/*3 or 
CYP3A5*1/*1), younger 
patients, higher serum 
albumin, lower serum 
creatinine, lower 
hematocrit and those 
with a higher phase 
angle require a higher 
tacrolimus starting 
dose. Patients carrying 
the CYP3A4*22 allele 
require a lower 
starting dose

Franken 
et al. 
(2022) 
[61]

● 184 patients, 
Caucasian 
population

● 3 months post- 
transplantation

● Post-hoc ana
lysis of clinical 
trial

● Oral twice- 
daily 
formulation

● Sampling: 406 whole- 
blood C0 and 184 
intracellular (PBMC) C0 

at month 3 post- 
transplantation

● PK analysis: NONMEM®, 
previously developed 
two-compartment 
model with first-order 
elimination and absorp
tion with lag time [48]

● Validation: internal 
(bootstrap, VPC, 
simulation)

ABCB1, age, albumin, BMI, 
BSA, HCT, ideal 
bodyweight, LBW, sex, 
total bodyweight

Ratio between whole- 
blood and intracellular 
tacrolimus = 14100 �
[LBW/59.5]1.01 � [HCT/ 
0.34]−1.22 � 0.9

Not applicable There is a 14-fold higher 
tacrolimus 
concentration in 
PBMCs compared 
whole-blood. Lean 
bodyweight is 
positively correlated 
and hematocrit is 
negatively correlated 
with the ratio between 
the whole-blood and 
intracellular tacrolimus 
concentration.

Henin 
et al. 
(2021) 
[62]

● 33 de novo 
patients, 
Tunisian 
population

● Prospective 
cohort

● Oral once-daily 
formulation

● Sampling: 339 C0 (days 
2–8, 14, 15, 21 and 28 
post-transplantation), 4 
full PK profiles per 
patient at day 1, 3, 7 
and 14 post- 
transplantation (pre- 
dose and 0.5, 1, 1.5, 2, 
3, 4, 6, 8, 12, 16, 20 and 
24 hours post-dose)

● PK analysis: NONMEM®, 
one-compartment dis
position model with 
first-order elimination 
and multi-phasic 
absorption

● Validation: internal 
(VPC), simulation trial

Age, albumin, BMI, BW, 
creat, CYP3A5, diabetes 
mellitus, eGFR, Hb, HCT, 
sex

Dose on POD 1 = 11.26 �
[BW/70]1.80 � 1.45[1, if 

CYP3A5*1/*1,*1/*3] or [0, if 

CYP3A5*3/*3]� 0.350 
Dose on POD 2 or 3 = 5.25 
� [BW/70]1.71 � 1.76[1, 

if CYP3A5*1/*1,*1/*3] or [0, if 

CYP3A5*3/*3] � 0.350

2.5 mg/day 
(1.0–6.8)

Patients with 
a bodyweight >70 kg, 
carrying the CYP3A5*1 
allele and on their first 
post-operative day, 
require a higher 
tacrolimus starting 
dose

Jing et al. 
(2021) 
[63]

● 165 de novo 
patients, 
Chinese 
population

● Retrospective 
cohort

● Oral twice- 
daily 
formulation

● Sampling: 824 C0 up to 
40 days post- 
transplantation

● PK analysis: NONMEM®, 
one-compartment 
model with first-order 
absorption and 
elimination

● Validation: internal 
(bootstrap, VPC), simu
lation trial with Monte 
Carlo simulation

ABCB1, age, albumin, ALT, 
AST, concomitant drugs, 
creat, CYP3A5, Hb, HCT, 
red blood cell count, 
sex, total bilirubin, total 
protein, urea nitrogen, 
uric acid, Wuzhi capsule, 
γGT

Dose = 23.4 � [HCT/ 
0.3]−0.729 � [0.837, if 
use of Wuzhi capsule] �
e−0.0875 * [POD/12.6] �

[1.18, if CYP3A5*1/*1 or 
CYP3A5*1/*3] � 0.350

7.7 mg/day 
(6.4–10.8)

Patients carrying the 
CYP3A5*1 allele and 
hematocrit < 30% 
require a higher 
tacrolimus dose. If 
combined with Wuzhi 
capsule, the required 
tacrolimus dose is 
decreased

(Continued )
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Table 1. (Continued). 

Author Patients Methods Covariates tested Final algorithm

Total daily 
dose  

(mg/day)a Main findings

Ling et al. 
(2020) 
[64]

● 234 de novo 
patients, 
Chinese 
population

● Retrospective 
cohort

● Oral twice- 
daily 
formulation

● Sampling: 824 C0 up to 
40 days post- 
transplantation

● PK analysis: NONMEM®, 
one-compartment 
model with first-order 
absorption and 
elimination

● Validation: internal 
(bootstrap), external (18 
patients; split original 
dataset), simulation trial 
with Monte Carlo 
simulation

ABCB1, age, albumin, ALT, 
AST, BW, concomitant 
drugs, creat, CYP3A5, 
Hb, HCT, POD, POR, red 
blood cell count, sex, 
total bilirubin, urea 
nitrogen, uric acid, 
white blood cell count

Dose = 23.3 � [HCT/ 
0.309]−0.445 � [0.897, if 
POD > 10] or [1, if 
POD ≤ 10] � [1.0, if 
CYP3A5*1/*1 or 
CYP3A5*1/*3] or [0.657, 
if CYP3A5*3/*3] � 0.350

5.3 mg/day 
(4.7–9.5)

Patients within the first 
10 days post- 
transplantation, 
hematocrit <0.309 L/L 
and carrying the 
CYP3A5*1 allele 
require a higher 
tacrolimus dose

Reséndiz- 
Galván 
et al. 
(2019) 
[65]

● 52 de novo 
patients, 
Mexican

● Prospective 
cohort

● Oral twice- 
daily 
formulation

● Sampling: 600 C0 at 
days 4–2370

● PK analysis: NONMEM®, 
one-compartment 
model with first-order 
elimination

● Validation: internal 
(bootstrap), external (13 
patients; split original 
dataset), simulation trial

Age, BMI, BW, concomitant 
drugs, creat, CYP3A4, 
CYP3A5, eGFR, glucose, 
HCT, height, POD, sex, 
tacrolimus formulation, 
urea, urea nitrogen

Dose = 12.3 � [HCT/ 
0.39)−0.32 � [2.12, if 
CYP3A5*1/*1] or [1.531, 
if CYP3A5*1/*3] or [1.0, 
if CYP3A5*3/*3] � 0.350

4.6 mg/day 
(4.2–10.0)

Patients carrying the 
CYP3A5*1 allele and 
hematocrit < 39.2% 
require a higher 
tacrolimus starting 
dose

Sanghavi 
et al. 
(2017) 
[66]

● 212 de novo 
patients, 
African 
American 
population

● Prospective 
cohort

● Oral once- and 
twice-daily 
formulation

● Sampling: 3704 C0 up to 
6 months post- 
transplantation

● PK analysis: NONMEM®, 
does not specify model

● Validation: internal 
(bootstrap), external 
(142 patients; split ori
ginal dataset)

BW, CMV serostatus, 
concomitant drugs, 
CYP3A4, CYP3A5, 
diabetes mellitus before 
transplantation, donor 
age, eGFR, POD, POR, 
recipient age, sex, 
steroid use

Dose = 54.6 � [1.33, if 
POD < 9] � [0.53, if 
CYP3A5*3/*3 or 
CYP3A5*3/*6 or 
CYP3A5*3/*7 or 
CYP3A5*6/*7 or 
CYP3A5*6/*6] or [0.85, if 
CYP3A5*1/*3 or 
CYP3A5*1/*6 or 
CYP3A5*1/*7] � [1.23, if 
receiving steroid] �
[0.92, if receiving anti- 
CMV drug] � [1.24, if 
recipient age 18–34  
years] � 0.350

15.2 mg/day 
(15.2–30.3)

Patients within the first 9  
days post- 
transplantation, 
between 18–34 years 
old, CYP3A5*1/*3, 
CYP3A5*1/*6, and 
CYP3A5*1/*7 carriers, 
and co-administration 
with steroids, require 
a higher tacrolimus 
dose compared to 
CYP3A5*3/*3, 
CYP3A5*3/*6, 
CYP3A5*3/*7, 
CYP3A5*6/*7, 
CYP3A5*6/*6 carriers 
and co-administration 
with anti- 
cytomegalovirus drug

Woillard 
et al. 
(2017) 
[67]

● 59 patients, 
Caucasian 
population

● Post-hoc ana
lysis of clinical 
trial

● Oral twice- 
daily 
formulation

● Sampling: C0 with one 
additional full PK profile 
per patient (pre-dose, 
30 minutes, 1.5, 3, 4, 8 
and 12 hours post-dose) 
, does not specify 
amount of samples

● PK analysis: Pmetrics® 
software for R, one- 
compartment model 
with double gamma 
absorption and first- 
order elimination

● Validation: internal 
(VPC, Monte Carlo 
simulation)

ABCB1, age, BW, CYP3A4, 
CYP3A5, eGFR, POR, sex

Not available Not applicable Extensive metabolizers 
(CYP3A5*1/*1 or *1/*3 
not carrying the 
CYP3A4*22 allele) 
require a two-fold and 
1.5-fold higher 
tacrolimus dose 
compared to poor 
metabolizers 
(CYP3A5*3/*3 carrying 
the CYP3A4*22 allele) 
and intermediate 
metabolizers 
(CYP3A5*3/*3 not 
carrying the 
CYP3A4*22) allele, 
respectively

Abbreviations: γGT, γ-glutamyl-transferase; ABCB1, gene encoding the drug transporter pump P-glycoprotein; ALT, alanine transaminase; AST, aspartate amino
transferase; ATG, antithymocyte globulin; AUC, area under the concentration versus time-curve; BMI, body mass index; BSA, body surface area; BW, bodyweight; C0, 
pre-dose concentration; CMV, cytomegalovirus; Creat, serum creatinine; CRP; C-reactive protein; CYP3A, cytochrome P450 3A genotype; DGF, delayed graft function; 
DOT, duration of tacrolimus therapy (days); eGFR, estimated glomerular filtration rate; EM, extensive/high metabolizers; Hb, hemoglobin; HCT, hematocrit; HLA, 
human leukocyte antigen; IM, intermediate metabolizers; LBW, lean body weight; MMF, mycophenolate mofetil; NONMEM; non-linear mixed-effects modeling; PA, 
phase-angle; PBMC, peripheral blood mononuclear cells; PK, pharmacokinetic; PM, poor metabolizers; POD, post-operative days; POR, P450 oxidoreductase enzyme; 
PRA, panel reactive antibodies; TBW, total bodyweight; TDD, total daily dose; VPC, visual predictive check. 
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3. Kidney transplantation dosing algorithms

3.1. Adult transplant recipients

New developed dosing algorithms for the starting dose of 
tacrolimus in adult transplant recipients are presented in 
Table 1, along with the main findings of these popPK studies 
(n = 12) [56–67]. If no dosing algorithm was available, this was 
calculated based on the popPK model. All starting dose 
algorithms were rewritten to achieve a tacrolimus target 
C0 of 10 ng/mL, which corresponds with an AUC of 175 
ng/h/mL [1,8]. The formula to create the required total 
daily dose based on the CL/F is as follows: 
Total daily dose mg=dayð Þ ¼ CL=F L=hð Þ � AUC=1000� 2. The 
identified models for follow-up doses by use of a PK soft
ware tool (model informed precision dosing; MIPD) of tacro
limus are presented in Table 2, along with the main findings 
of these popPK studies (n = 6) [68–73]. The trials prospec
tively testing dosing algorithms will be discussed in detail in 
a subsequent section (n = 3) [55,74,75].

3.1.1. Covariates incorporated in popPK models
As presented in Tables 1 and 2, an overarching covariate 
tested and included in the popPK models is the CYP3A geno
type [57–60,62–68,71–73]. Although the relationship between 
the CYP3A5*3, CYP3A5*6 and CYP3A4*22 SNPs and tacrolimus 
dosing requirements is clear, there is no evidence that geno
type-based dosing improves clinical outcomes. Two RCTs 
investigated the proportion of patients within the tacrolimus 
therapeutic range after six unaltered doses based on CYP3A5- 
guided dosing [52,53]. Only the TACTIQUE study demon
strated a small increase in this proportion [53], whereas 
neither of these two clinical studies demonstrated an effect 
on the clinical outcome, i.e. less acute rejection as a result of 
genotype-guided dosing. In addition, it may be difficult to 
assess the significance of any single SNP due to ethnic varia
tion in the prevalence of CYP3A5, CYP3A4 and ABCB1 geno
types being high and clinically relevant. When conducting 
a study within one population, there might not be a high 
enough number of patients with each SNP. Possibly, compar
isons across populations increase the chance that there are 
other (unidentified) differences between the populations that 
contribute to these effects.

Hematocrit remained significant as a covariate in several 
models [57,60,61,63–65,71–73], and all correlated inversely 
with tacrolimus CL. All discussed models were developed for 
whole-blood tacrolimus concentrations, as this is current TDM 
practice. However, as tacrolimus binds >95% to erythrocytes 
[12,13], changes in CL due to changes in hematocrit might 
alter the unbound, pharmacologically active concentration of 
tacrolimus [14]. Perhaps, the unbound tacrolimus fraction in 
plasma is a variable we should investigate for the correlation 
with tacrolimus toxicity, or the intra-lymphocytic concentra
tion, as this is the site of action of tacrolimus [76]. The 

correlation between the whole-blood and intracellular concen
tration was recently investigated [61], but no dosing algorithm 
can yet be developed from this, since the target concentration 
range for intracellular tacrolimus is unknown.

Post-operative days (POD) and/or the days a patient was 
on tacrolimus therapy remained significant in half of the 
models [59,62–64,66,70–73]. All came to the same conclu
sion, namely an increase in days (i.e. the longer a patient is 
after transplantation) will require a lower tacrolimus dose, 
independent of the lower target range in that period. Some 
demonstrated this for the immediate phase post- 
transplantation [62–64,66,72], i.e. up to 12 days post- 
transplantation, whereas others demonstrated this for 125– 
180 days post-transplantation [59,71,73]. This is in line with 
previous findings where tacrolimus dose-requirement (cor
rected for BW) decreased during the first post-operative 
year [77]. The incorporation of days in a model might be 
biased if not adjusted for the corticosteroid dose, which is 
tapered in the post-operative phase [78]. Likewise, the pos
sibility of a simultaneous change (recovery) of kidney and/or 
liver function should be adjusted for.

Age of the kidney transplant recipient was tested as 
a covariate in nearly all popPK models, but only five studies 
demonstrated a correlation with tacrolimus CL and these were 
all starting dose algorithms [57–60,66]. All found a negative 
correlation (indicating a decreasing CL with aging), except for 
the popPK model by Ben-Fredj et al. [59]. Perhaps, this could 
be attributed to the fact that Ben-Fredj et al. included rela
tively young kidney transplant recipients with a median age of 
33.6 years ranging from 20 to 58 years [59].

All studies investigated the effect of body composition 
parameters on tacrolimus CL, e.g. BW, body mass index 
(BMI), body surface area (BSA), fat mass, and lean bodyweight 
(LBW). No associations were found between PK parameters 
and BMI and fat mass, respectively. Interestingly, BW remained 
significant in four models [59,62,72,73], despite the known 
poor correlation between BW and tacrolimus CL as discussed 
in the introduction. Andrews et al. demonstrated a positive 
correlation between BSA and the required tacrolimus starting 
dose [58]. However, when other studies applied this popPK 
base model [60,61], the correlation of BSA with tacrolimus CL 
disappeared and other body composition parameters were 
identified. LBW was found to correlate positively with the 
ratio between whole-blood and intracellular tacrolimus con
centration [61], although the implication of this for clinical 
care remains yet unclear as no target intracellular tacrolimus 
concentrations have been identified. Francke et al. conducted 
a study specifically investigating the effect of multiple body 
composition parameters measured by use of bio-impedance 
spectroscopy, e.g. adipose tissue mass, fat tissue index, lean 
tissue index, lean tissue mass, over-hydration, bio-impedance 
spectroscopy-derived phase angle, and estimated the patient’s 
BMI, BSA, ideal bodyweight and lean tissue mass [60]. The

aMedian (range), calculated for a target of 10 ng/mL for patients in the study of Francke et al. [65]. 
bOnly estimated in n = 6 kidney transplant recipients since AST was not available for all patients. 
cEM, high metabolizers (CYP3A4*22 non-carriers and CYP3A5*1 carriers); IM, intermediate metabolizers (CYP3A4*22 non-carriers with the CYP3A5*3/*3 genotype or 

CYP3A4*22 carriers with the CYP3A5*1/*1 genotype); PM, poor metabolizers (CYP3A4*22 carriers with the CYP3A5*3/*3 genotype). 
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Table 2. Models for tacrolimus CL/F for model informed precision dosing (MIPD) in adult kidney transplant recipients.

Author Patients Methods Covariates tested Final algorithm Main findings

Campagne 
et al. (2018) 
[68]

● 67 patients, 
Caucasian 
population

● >6 months 
post- 
transplantation

● Clinical trial
● Oral twice- 

daily 
formulation

● Sampling: 1 full PK profile 
per patient (pre-dose, 1, 2, 
3, 4, 6, 8, 10 and 12 hours 
post-dose)

● PK analysis: NONMEM®, 
two-compartment model 
with first-order elimination 
and absorption with lag 
time

● Validation: internal (boot
strap, VPC, simulation), 
simulation trial

Age, ABCB1, albumin, BMI, 
comedication, creat, 
CYP3A5, diabetes mellitus, 
eGFR, ethnicity, glucose, 
Hb, HCT, HDL, LDL, 
leukocytes, platelets, POD, 
sex, TBW, total cholesterol, 
triglycerides

aCL/F = 19.7 � 1.45IM �

2.25EM � e0:1283 

V/F = 234 � [TBW/85.9] �
e0:4627

Extensive metabolizers 
(CYP3A5*1/*1) and 

intermediate metabolizers 
(CYP3A5*1/*3, *1/*6, *1/ 

*7) require a two-fold and 
1.5-fold higher dose, 

respectively, compared to 
poor metabolizers 

(CYP3A5*3/*3, *6/*6, *7/ 
*7, *3/*6, *3/*7, *6/*7)

Rong et al. 
(2019) [69]

● 49 de novo 
patients, 50% 
Caucasian and 
50% Chinese 
population

● Retrospective 
cohort

● Oral twice- 
daily 
formulation

● Corticosteroid- 
free regimen

● Sampling: 40 sparse 
samples from 21 patients 
(pre-dose and 2 hours 
post-dose), 280 intensive 
samples from 28 patients 
(pre-dose, 0.5, 1–4, 6, 8, 10 
and 12 hours post-dose)

● PK analysis: Monolix®, 
two-compartment model 
with first-order absorption 
with a lag time, linear 
elimination

● Validation: internal (boot
strap, VPC)

Age, BW, creat, eGFR, height, 
MMF dose, MMF dose- 
normalized AUC, POD, sex

CL/F = 17.9 � [eGFR/56]−0.885 

� e0.346 

V/F = 150 � [eGFR/56]−2.13 �
e0.808

The estimated glomerular 
filtration rate is inversely 

correlated with tacrolimus 
clearance

Vadcharavivad 
et al. (2016) 
[70]

● 96 de novo 
patients, Thai 
population

● Prospective 
cohort

● Oral twice- 
daily 
formulation

● Sampling: 1183 samples of 
which most were C0, 
additional sampling in 26 
patients (pre-dose, 1, 2, 4, 
6, 8 and 12 hours post- 
dose)

● PK analysis: NONMEM®, 
one-compartment model 
with first-order absorption

● Validation: internal (boot
strap, VPC and simulation)

Albumin, BW, DOT, eGFR, Hb, 
prednisolone dose

CL/F = 21.5 � e−0.05 * [HB − 

11.8] � [DOT/125]−0.06�
e0.127 

V/F = 333 � e0.34

Patients with hemoglobin 
<11.8 g/dL and less than 

125 days of tacrolimus 
therapy require a higher 

tacrolimus dose

Zhang et al. 
(2017) [71]

● 83 de novo 
patients, 
Chinese 
population

● Retrospective 
cohort

● Oral twice- 
daily 
formulation

● Sampling: 2109 C0 up to 
12 months post- 
transplantation

● PK analysis: NONMEM®, 
one-compartment with 
first-order absorption and 
elimination

● Validation: internal (boot
strap, VPC)

Age, BW, CYP3A5, HCT, POD, 
sex, total bilirubin

CL/F = 22.4 � e−0.0526 * [83/ 

POD] � [39.1/HCT]0.548 �

e−0.32 * [1, if CYP3A5*1/*1,*1/*3] 

or [0, if CYP3A5*3/*3]� e0.2231 

V/F = 967 � e0.311

Increase in post-operative 
days, hematocrit < 39.1% 

and CYP3A5*1 carriers 
require a higher 
tacrolimus dose

Zhang et al. 
(2022) [72]

● 240 de novo 
patients, 
Chinese 
population

● Retrospective 
cohort

● Oral twice- 
daily 
formulation

● Sampling: 1950 samples 
(pre-dose and 12 hours 
post-dose) up to 3 weeks 
post-transplantation

● PK analysis: NONMEM®, 
two-compartment model 
with first-order absorption 
and elimination

● Validation: internal (boot
strap, VPC), external (110 
patients; independent 
cohort), simulation trial 
with Monte Carlo 
simulation

Age, BW, CYP3A5, HCT, POD, 
sex, Wuzhi capsule

CL/F = 18.6 � [BW/70]0.75 �

[0.69, if use of Wuzhi 
capsule] � [1.21, if 
CYP3A5*1/*3] or [1.40, if 
CYP3A5*1/*1] or [1.0, if 
CYP3A5*3/*3] � [POD/ 
12]0.09 � [HCT/0.34]−0.27 �

e0.0519V2/F = 86.3 � e0.2295 

V3/F = 701 � e0.5777

Patients carrying the 
CYP3A5*1 allele, 

hematocrit <0.34 L/L, 
increased post-operative 

days and bodyweight 
>70 kg require a higher 

tacrolimus dose. If 
combined with Wuzhi 
capsule, the required 

tacrolimus dose is 
decreased

(Continued )
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phase angle, calculated as the arc tangent of reactance over 
resistance and thus relates to body cell mass, membrane 
integrity and hydration status [79], resulted in the best 

correlation of all body composition parameters, in which the 
phase angle was positively correlated with a higher required 
tacrolimus starting dose [60]. The use of body composition 
parameters other than BW may be interesting as tacrolimus is 
a lipophilic drug, and people in general tend to have 
a different body composition (muscle versus fat mass).

Concomitant drugs were often tested [58,59,63–66,68– 
70,72,73] but remained significant in only five models. Wuzhi 
capsule usage (a traditional Chinese medicine) was significant 
when tested [63,72]. Wuzhi capsules contain the extract of 
Schisandra sphenanthera, which is a medicinal herb and 
known to inhibit tacrolimus metabolism, leading to a lower 
dose requirement [80]. Induction therapy with antithymocyte 
globulin [59], use of an anti-cytomegalovirus drug [66] and use 
of steroids [66] were only of significant influence in one of the 
popPK models.

Numerous other covariates were tested in several popPK mod
els (aspartate aminotransferase (AST), sex, hemoglobin, albumin, 
estimated glomerular filtration rate, serum creatinine), but each of 
these covariates remained only of significant influence in one of 
the popPK models [56,59,60,69,70]. Therefore, these covariates 
might represent chance findings. Especially, the explanation for 
the association of tacrolimus CL with renal function (either esti
mated glomerular filtration rate or serum creatinine) remains 
unclear as tacrolimus undergoes hepatic elimination and almost 
no renal elimination. Sex was only identified as a significant cov
ariate in the study in Tunisian patients by Ben-Fredj et al. [59] but 
this might be attributed to the relatively high number of men 
included compared to women (70 men versus 32 women).

Apart from the selected covariates, more than half of the 
papers had a retrospective cohort design in common. 
Meaning that they were only able to re-use information from 
standard care sampling or previous studies, which mostly 
included only pre-dose concentrations (as opposed to AUC 
measurements).

3.1.2. Trials prospectively testing starting dose algorithms
Prospectively tested models are rare. Three models were 
identified for adults [55,74,75]. In 2015, Størset et al. [74]

Table 2. (Continued). 

Author Patients Methods Covariates tested Final algorithm Main findings

Zhu et al. 
(2018) [73]

● 141 stable 
patients, 
Chinese 
population

● Retrospective 
cohort

● Oral twice- 
daily 
formulation

● Sampling: 1232 C0, 
unknown sampling period

● PK analysis: NONMEM®, 
two-compartment model 
with first-order absorption 
and elimination

● Validation: internal (boot
strap, VPC), external (15 
patients; split original 
dataset)

Age, albumin, ALT, AST, BSA, 
BW, creat, CYP3A4, 
CYP3A5, Hb, HCT, POD, 
POR, prednisone and 
verapamil co- 
administration, sex, 
tacrolimus dose, total 
protein

CL/F = 27.72 � [BW/70]0.75 �

[HCT/0.35]−0.501 � [POD/ 
180]0.0306 � [0.753, if 
CYP3A5*3/*3] � e0.288V/F =  
240

Patients with bodyweight 
>70 kg, hematocrit <0.35  

L/L and an increase in 
post-operative days 

require a higher 
tacrolimus dose. 

CYP3A5*3/*3 carriers 
require a lower tacrolimus 

dose

Abbreviations: γGT, γ-glutamyl-transferase; ABCB1, gene encoding the drug transporter pump P-glycoprotein; ALT, alanine transaminase; AST, aspartate amino
transferase; ATG, antithymocyte globulin; AUC, area under the concentration versustime-curve; BMI, body mass index; BSA, body surface area; BW, bodyweight; C0, 
pre-dose concentration; CMV, cytomegalovirus; Creat, serum creatinine; CRP; C-reactive protein; CYP3A, cytochrome P450 3A genotype; DGF, delayed graft function; 
DOT, duration of tacrolimus therapy (days); eGFR, estimated glomerular filtration rate; EM, extensive/high metabolizers; Hb, hemoglobin; HCT, hematocrit; HLA, 
human leukocyte antigen; IM, intermediate metabolizers; LBW, lean body weight; MMF, mycophenolate mofetil; NONMEM; non-linear mixed-effects modeling; PA, 
phase-angle; PBMC, peripheral blood mononuclear cells; PK, pharmacokinetic; PM, poor metabolizers; POD, post-operative days; POR, P450 oxidoreductase enzyme; 
PRA, panel reactive antibodies; TBW, total bodyweight; TDD, total daily dose; VPC, visual predictive check. 

aIM, intermediate metabolizers (CYP3A5*1/*3,  * 1/*6,  * 1/*7) ( = 1) (otherwise, = 0), EM, extensive metabolizers (CYP3A5*1/*1) ( = 1) (otherwise, = 0). 

Figure 2. Estimated tacrolimus pre-dose concentration at day 3 post- 
transplantation grouped per algorithm.
Legend: The estimated pre-dose concentration at day 3 post-transplantation for a cohort 
of n = 59 kidney transplant recipients is plotted for bodyweight-based dosing and the 
starting dose algorithms. The numbers in between brackets on the x-axis refer to the 
reference number of the algorithm. The gray-shaded area represents the therapeutic target 
range of tacrolimus (8–12 ng/mL). 
a The starting dose for the algorithm of Alqahtani et al. [56] could only be estimated in n =  
6 kidney transplant recipients since aspartate aminotransferase (AST) was not available for 
all patients in our cohort. 
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were the first to prospectively test a previously developed 
dosing algorithm by Åsberg et al. [81]. In a single-center RCT, 
n = 78 de novo kidney transplant recipients were randomized 
to receive either MIPD (n = 39) or conventional, TDM-based 
follow-up dosing (n = 39; control group) during the first 8  
weeks post-transplantation. For both groups, the tacrolimus 
starting dose was based on conventional BW dosing. For 
algorithm-based dosing, the model without CYP3A5 geno
type was used as most of the recipients had not been geno
typed before transplantation. For each following dose 
prediction, updated patient characteristics were needed: fat- 
free-mass (FFM), hematocrit, time after transplantation, tacro
limus dosing history and previously measured tacrolimus 
concentrations (up to 5 measurements). Standard-risk (tacro
limus target range 3–7 ng/mL) and high-risk (target range 8– 
12 ng/mL) recipients were analyzed separately. Overall, the 

proportion of concentrations per standard-risk patient within 
the target range was significantly higher with algorithm- 
based dosing (median 90%, 95% confidence interval (95% 
CI) 85–95%) than in the control group (78%, 95% CI 76– 
82%) (p-value <0.001). The same was observed for high-risk 
patients (77%, 95% CI 71–80%; algorithm-based dosing ver
sus 59%, 95% CI 40–74%; control group; p-value = 0.04). 
However, there was only a significant difference in the med
ian time to achieve the target concentration in high-risk 
patients (three days in algorithm-based dosing versus five 
days in control group; p-value = 0.04). There was no differ
ence between the groups in frequency of biopsy-proven 
acute rejection, and considering tacrolimus toxicity, no dif
ference in recorded infections and fasting glucose concentra
tions. However, a significant difference between the groups 
was observed for 2-hour plasma glucose concentrations at 8

Table 3. Tacrolimus starting dose algorithms for pediatric kidney transplant recipients.

Author Patients Methods Covariates tested Final algorithm Main findings

Andrews 
et al. 
(2018) 
[82]

● 46 de novo 
patients, 
Caucasian 
population

● Age: 9.1a 

(2.4–17.9)
● Oral twice- 

daily 
formulation

● Retrospective 
cohort

● Sampling: 722 samples, of 
which C0 up to 6 weeks post- 
transplantation, and one PK 
profile per patient at 2 weeks 
post-transplantation (pre-dose, 
10, 30, 90, 120 and 240 minutes 
post-dose)

● PK analysis: NONMEM®, two- 
compartment model with allo
metric scaling on BW

● Validation: internal (bootstrap, 
VPC), external (23 patients; 
independent cohort), simulation 
trial

Age, albumin, AST, BW, 
concomitant drugs, creat, 
CYP3A4, CYP3A5, donor type, 
eGFR, ethnicity, HCT, height, 
HLA mismatch, number of 
kidney transplantation, primary 
kidney disease, renal 
replacement therapy prior to 
transplantation, sex

Dose = 54.9 � [BW/ 
70]0.75 � [1.8, if 
CYP3A5*1/*3 or 
CYP3A5*1/*1] �
[0.74, if living 
donor] � 0.444

CYP3A5*1 carriers, patients with 
a lower bodyweight and 
recipients of a kidney from 
a deceased donor require 
a higher tacrolimus weight- 
normalized starting dose

Andrews 
et al. 
(2020) 
[83]

● 95 de novo 
patients, 
Caucasian 
population

● Age: 11.4a 

(1.6–17.9)
● Oral twice- 

daily 
formulation

● Retrospective 
cohort

● Sampling: 1138 samples, of 
which C0 up to 6 weeks post- 
transplantation, and for 90 
patients one PK profile around 
week 2 post-transplantation 
(pre-dose, 10, 30, 90, 120 and 
240 minutes post-dose)

● PK analysis: NONMEM®, two- 
compartment model with with 
inter-individual variability, allo
metric scaling and inter- 
occasion variability on clearance

● Validation: internal (VPC)

Age, albumin, AST, BW, 
concomitant drugs, creat, CRP, 
CYP3A4, CYP3A5, donor status, 
eGFR, ethnicity, HCT, height, 
HLA mismatch, number of 
transplantation, POD, primary 
kidney disease, renal 
replacement therapy prior to 
transplantation, sex, total 
protein

Dose = 34.5 � [BW/ 
70]0.56 � [1.0, if 
CYP3A5*3/*3] or 
[1.46, if CYP3A5*1/ 
*3 or CYP3A5*1/*1] 
� 0.444

CYP3A5*1 carriers and patients 
with a lower bodyweight 
require a higher tacrolimus 
weight-normalized starting 
dose

Jacobo 
et al. 
(2015) 
[84]

● 53 de novo 
patients, 
Mexican 
population

● Age: 16b (2– 
19)

● Oral twice- 
daily 
formulation

● Prospective 
cohort

● Sampling: one full PK profile per 
patient at steady-state (pre- 
dose, 0.5, 1–4, 6, 8 and 12 hours 
post-dose)

● PK analysis: NONMEM®, two- 
compartment model with first- 
order input and elimination

● Validation: internal (bootstrap, 
VPC)

ABCB1, age, albumin, ALT, AST, 
BSA, BW, creat, CYP3A5, Hb, 
HCT, POD, prednisone and 
verapamil co-administration, 
sex, tacrolimus dose and 
formulation, total protein

Dose = 11.98 � [1.0, 
if CYP3A5*3/*3] or 
[1.5, if CYP3A5*1/ 
*3] or [1.93, if 
CYP3A5*1/*1] �
0.444

CYP3A5*1/*1 and  * 1/*3 carriers 
require a two- and 1.5-fold 
higher tacrolimus starting dose 
compared to CYP3A5*3/*3 
carriers, respectively

Abbreviations: γGT, γ-glutamyl-transferase; ABCB1, gene encoding the drug transporter pump P-glycoprotein; ALT, alanine transaminase; AST, aspartate amino
transferase; BSA, body surface area; BW, bodyweight; C0, pre-dose concentration; Creat, serum creatinine; CRP; C-reactive protein; CYP3A, cytochrome P450 3A 
genotype; DOT, duration of tacrolimus therapy (days); eGFR, estimated glomerular filtration rate; Hb, hemoglobin; HCT, hematocrit; HLA, human leukocyte antigen; 
NONMEM; non-linear mixed-effects modeling; PK, pharmacokinetic; POD, post-operative days; VPC, visual predictive check. 

aMean (range). 
bMedian (range). 
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weeks post-transplantation in favor for the algorithm based 
dosing group (5.9 mmol/L, 95% CI 5.6–6.6 mmol/L versus 6.8  
mmol/L, 95% CI 6.1–8.1 mmol/L) (p-value = 0.008).

A single-arm prospective trial was performed by Francke 
et al. [55], testing a starting dose algorithm previously devel
oped by Andrews et al. [58]. Fifty-nine de novo kidney trans
plant recipients were initiated on a starting dose based on the 
algorithm including CYP3A4 and CYP3A5 genotype, BSA and 
age, aiming for a target range 7.5–12.5 ng/mL at day 3 post- 
transplantation. Hereafter, TDM was performed as part of 
routine clinical care aiming for the same target range in 
weeks 1 to 2. The proportion of recipients within the target 
range at day 3 was 58% (95%-CI 47–68%), and the median 
tacrolimus C0 was 8.4 ng/mL (IQR 6.9–10.4). In most patients, 
the algorithm recommended a lower starting dose than a BW- 
based approach. This was most pronounced in obese patients 
and in CYP3A5 non-expressers [55]. The participants were 
compared to a historic control group of patients who received 
a starting dose based on BW [52]. In this group, the proportion 
of recipients within the target range at day 3 was 37.4% (95%- 
CI 28.5–47%), with a median tacrolimus C0 of 13.3 ng/mL 
(range 2.6–30.0) [52]. In conclusion, it was demonstrated that 
algorithm-based tacrolimus dosing leads to the achievement 
of the desired target range in more patients than BW dosing.

A simulation trial was subsequently performed by these 
same authors [75] including the previously discussed patients 
that received an algorithm-based tacrolimus starting dose 
followed by TDM (control group) [55]. For every measured 
tacrolimus C0, a model-based dosing advice was simulated 
based on previous tacrolimus doses and measured C0, age, 
BSA, CYP3A4 and CYP3A5 genotype, hematocrit, albumin and 
creatinine (simulation group). A total of 190 C0 values were 
simulated and included. The proportion of observed tacroli
mus C0 within the target range (7.5–12.5 ng/mL) following 
TDM was not significantly different from the simulated tacro
limus C0, 121 out of 190 C0 in observation group (63.7%, 95% 
CI 56.8–70.5) versus 126 out of 190 in the simulation group 

(66.3%, 95% CI 59.6–73.0) (p-value = 0.89) [75]. This implicates 
that the additional effect of model-based follow-up dosing on 
the initial algorithm-based starting dose seems small.

3.1.3. Simulations of the starting dose algorithms
To demonstrate the potential effect of the starting dose algo
rithms for adults on the actual total daily starting dose of 
tacrolimus, we tested these algorithms aiming for an AUC of 
350 ng/h/mL according to the methods described in section 
3.1. This was done in a database of kidney transplant recipi
ents transplanted in the Erasmus MC consisting of n = 59 
kidney transplant recipients who were treated according to 
the starting-dose algorithm of Andrews et al. [58], in which the 
median age at time of transplantation was 59 years (range 19– 
83 years), 63% was male (n = 37), 90% was Caucasian (n = 53), 
and the median BW at time of transplantation was 80.0 kg 
(range 49.3–119.5 kg). All baseline characteristics of these 
patients are described elsewhere [55]. This algorithm-based 
starting dose was compared to the BW-based starting dose 
in these patients (0.20 mg/kg/day). In order to evaluate the 
performance of the models, we estimated the C0 that these 
patients would have had on day 3 post-transplantation, both 
for the BW-based and algorithm-based starting dose. This was 
calculated by use of the actual administered daily dose in 
these patients, the measured C0 in these patients at day 3 
and the hypothetical algorithm-based or the BW-based daily 
starting dose of these patients: 
OR BW based daily starting dose �measured tacrolimus C0=
[55].

In our database, not all necessary values were available at 
pre-transplantation. Therefore, we chose to estimate the start
ing dose and C0 at day 3 based on the covariates measured 
at day 1 post-transplantation. The median BW-based starting 
dose was 16 mg/day (range 10–24 mg/day). The median algo
rithm-based starting dose per algorithm is presented in 
Table 1, along with their ranges. All proposed a lower starting 
dose compared to the BW-based starting dose of 16 mg/day.

Table 4. Models for tacrolimus CL/F for model informed precision dosing (MIPD) in pediatric kidney transplant recipients.

Author Patients Methods Covariates tested Final algorithm Main findings

Prytula 
et al.  
(2016) 
[85]

● 54 stable 
patients with 
a follow-up for 
at least 1 year 
post- 
transplantation

● Age: 11.1b 

(3.8–18.4)
● Oral twice- 

daily 
formulation

● Retrospective 
cohort

● Sampling: 104 full PK profile in 
45 patients (pre-dose, 10, 30, 
90, 120 and 240 minutes post- 
dose) and 16 full PK profile in 
9 patients (pre-dose and 2  
hours post-dose)

● PK analysis: NONMEM®, two- 
compartment model with 
allometric scaling on BW

● Validation: internal (bootstrap, 
VPC), external (27 patients; 
independent cohort), simula
tion trial

ABCB1, age, albumin, ALT, AST, 
BSA, BW, concomitant drugs, 
creat, CYP3A5, donor type, 
DOT, eGFR, ethnicity, HCT, 
height, POD, renal 
replacement therapy before 
transplantation, sex, γGT

CL/F = 35 � [1.0, if 
CYP3A5*3/*3] or [1.45, 
if CYP3A5*1/*1 or 
CYP3A5*1/*3] � [BW/ 
70]0.75 � [γGT/13]−0.21 

� [HCT/0.34]−0.59

Patients carrying the CYP3A5*1 
allele require a two-fold 
higher dose compared to 
CYP3A5*3/*3 carriers. Patients 
with a lower bodyweight 
require a higher weight- 
normalized dose. Decrease in 
γ-glutamyl-transferase and 
hematocrit requires a lower 
tacrolimus dose

Abbreviations: γGT, γ-glutamyl-transferase; ABCB1, gene encoding the drug transporter pump P-glycoprotein; ALT, alanine transaminase; AST, aspartate amino
transferase; BSA, body surface area; BW, bodyweight; C0, pre-dose concentration; Creat, serum creatinine; CRP; C-reactive protein; CYP3A, cytochrome P450 3A 
genotype; DOT, duration of tacrolimus therapy (days); eGFR, estimated glomerular filtration rate; Hb, hemoglobin; HCT, hematocrit; HLA, human leukocyte antigen; 
NONMEM; non-linear mixed-effects modeling; PK, pharmacokinetic; POD, post-operative days; VPC, visual predictive check. 

aMean (range). 
bMedian (range). 
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The median estimated C0 at day 3 for the BW-based start
ing dose was 11.2 ng/mL (range 4.3–49.5 ng/mL). The median 
estimated C0 at day 3 for the algorithm-based starting dose 
per algorithm is plotted in Figure 2. Only the algorithm of Ben- 
Fredj et al. [59] had the median C0 in the therapeutic target 
range of 8–12 ng/mL (median 8.0 ng/mL, range 3.3–33.1 ng/ 
mL). Most estimated C0 were under the lower limit of the 
target concentration range, whereas the algorithm by 
Sanghavi et al. [66] was above. The algorithm-based starting 
dose and estimated C0 for the algorithm by Woillard et al. 
could not be calculated since the algorithm is not provided in 
the paper [67].

Most algorithms underperformed compared to BW-based 
dosing, although the variability of the estimated C0 was smal
ler. However, we estimated the doses and C0 based on the 
covariates measured at day 1 post-transplantation. In clinical 
care, these values of the first post-transplant day are of course 
not known at pre-transplantation when calculating the initial 
starting dose. On the other hand, incorporating laboratory 
values in a starting dose algorithm might be less reliable 
since most of these values differ greatly between pre- and 
post-transplantation. Furthermore, the algorithm-based start
ing dose for the algorithm of Alqahtani et al. [56] could only 
be predicted for n = 6 kidney transplant recipients as only 
those had an AST concentration available at day 1 post- 
transplantation. Another limitation of implementing these 
algorithms on our patients is based on the ethnicity of the 
population, as most of these patients were Caucasian. Since 
Alqahtani et al. [56] developed their model in a Saudi popula
tion, Ben-Fredj et al. [59] and Henin et al. [62] developed theirs 
in a Tunisian population, Jing et al. [63] and Ling et al. [64] in 
a Chinese population, Reséndiz-Galván et al. [65] in a Mexican 
population and Sanghavi et al. [66] in an African-American 
population, our database might not be representable for 
these algorithms. The model of Andrews et al. [58] was devel
oped in our population and would thus fit better compared to 
the other algorithms. Furthermore, the algorithm by Henin 
et al. was developed in a population that used a once-daily 
tacrolimus formulation [62]. Subsequently, the correlation 
between the AUC and C0 might be different for this popula
tion compared to the target AUC of 350 ng/h/mL we used, 
and this has to be taken into consideration when interpreting 
the simulations. Finally, the target AUC of 350 ng/h/mL was 
based on the consensus report of the Immunosuppressive 
Drugs Scientific Committee of the International Association 
of Therapeutic Drug Monitoring and Clinical Toxicity 
(IATDMCT) [8]. However, some models incorporate 
a calculated AUC based on their population, as, for example, 
the AUC of 444 ng/h/mL in the ‘Caucasian’ algorithm of 
Andrews et al. [58].

3.2. Paediatric transplant recipients

Table 3 presents an overview of the new developed dosing 
algorithms for the starting dose of tacrolimus in pediatric 
kidney transplant recipients, along with the main findings 

of these popPK studies (n = 3) [82–84]. All starting dose algo
rithms were rewritten to achieve a tacrolimus C0 of 10 ng/mL, 
according to the methods described in section 3.1. If no 
dosing algorithm was available, this was calculated based 
on the popPK model. In Table 4 the model identified for 
MIPD of tacrolimus in pediatric kidney transplant recipients 
is presented, along with the main findings of this popPK 
study (n = 1) [85]. One study prospectively tested their dosing 
algorithm and this will be discussed in detail in a subsequent 
section [83].

3.2.1. Covariates incorporated in popPK models
All four identified popPK models include CYP3A5 genotype 
as a covariate, with the need for higher tacrolimus doses in 
case of expressers (range of 1.45–1.93 fold higher compared 
to non-expressers) [82–85]. Indeed, in 2018, one RCT inves
tigated the efficacy of dosing based on age and CYP3A5 
genotype (intervention group) compared to standard care, 
BW dosing (control group) in n = 53 pediatric solid organ 
transplant recipients [86]. Patients were randomized (2:1) to 
the intervention (n = 35) or control group (n = 18) and were 
further stratified by their genotype (expresser versus non- 
expressers, e.g. CYP3A5*1/*1 or CYP3A5*1/*3, and CYP3A5*3/ 
*3, respectively) and by organ type (liver versus non-liver). 
Genotype dosing was also stratified by age (≤ or >6 years). 
The starting dose was unaltered for the first 36–48 hours 
and patients were followed for 30 days. Age and genotype- 
based dosing led to faster achievement of the desired 
tacrolimus target range compared to standard care BW 
dosing (median 3.4 days (IQR 2.6–6.6) versus 4.7 days (IQR 
3.5–8.6); p-value = 0.049). However, a difference in (adverse) 
clinical outcomes was not observed between the different 
dosing strategies, which may be the result of under 
powering.

BW was incorporated in three popPK models [82,83,85], all 
proposing a higher weight-normalized dose for children with 
a lower BW compared to children with a higher BW. This is in 
line with the previously developed starting dose algorithms 
[87–89], discussed in our previous review [54]. Age was tested 
in all four identified models but never demonstrated to influ
ence tacrolimus CL significantly.

In contrast to the adult algorithms, hematocrit only 
remained significant in the study by Prytula et al. [85]. 
Andrews et al. did identify hematocrit as a significant covari
ate, but retained it from their final starting dose algorithm 
because the last measured hematocrit before kidney trans
plantation did not significantly influence the CL and hemato
crit itself often changes greatly after transplantation [82]. On 
the other hand, many adult algorithms incorporated hemato
crit as a covariate and this might be reasonable.

Prytula et al. also incorporated γ-glutamyl-transferase (γGT) 
in their model [85]. Although it has been demonstrated pre
viously that a decline in hepatic function could lead to a lower 
tacrolimus CL [90], the other markers of liver function (e.g. AST 
or alanine aminotransferase (ALT) were not deemed to be of 
significant influence on tacrolimus CL in the model of Prytula
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et al [85]. As the γGT is not entirely specific for hepato-biliary- 
dysfunction, the incorporation of this covariate in a popPK 
model for tacrolimus CL is open for discussion.

Donor type (e.g. living or deceased) only remained signifi
cant in the first model of Andrews et al. [82]. However, it 
remains unclear why a kidney allograft from a deceased 
donor would induce a higher tacrolimus CL, since tacrolimus 
is mostly metabolized by the liver and undergoes almost no 
renal clearance. In their updated model [83], this covariate was 
no longer significant.

3.2.2. Trial prospectively testing starting dose algorithm
Andrews et al. were the first to prospectively test their devel
oped starting dose algorithm aiming for a tacrolimus C0 range 
of 10–15 ng/mL at day 3 [83]. However, the interim analysis 
after the inclusion of n = 15 recipients demonstrated that the 
algorithm predicted really high doses (i.e. 0.80 mg/kg/day) in 
CYP3A5 expressers who received a kidney from a deceased 
donor (n = 3). Considering these high doses, the C0 was mea
sured at day 1 or 2 post-transplantation and because these 
were too high, the tacrolimus dose was altered before day 3. 
Although the a priori criteria for success were met (31% of the 
recipients was on target at day 3 post-transplantation, 
whereas the minimum for success was set at 25%), the study 
was discontinued prematurely because of serious concern 
among the treating physicians regarding the possibility of 
overdosing in combination with the fact that 25% of the 
recipients were CYP3A5 expressers and received a kidney 
from a deceased donor. Thus, a new dosing algorithm was 
developed in an extended cohort, consisting of total n = 95 
pediatric recipients. The final algorithm included BW and the 
CYP3A5 genotype and this was successfully internally validated 
[83]. This model has not yet been prospectively tested.

4. Conclusions

Multiple tacrolimus dosing algorithms have been developed 
for the starting dose and follow-up doses for both adult and 
pediatric kidney transplant recipients. As shown in Tables 1–4, 
hematocrit and CYP3A genotype are incorporated in most of 
these algorithms. Although many algorithms are available, the 
majority has not been validated externally by use of an exter
nal database, and only a few have been tested prospectively. 
These prospectively tested algorithms performed better than 
conventional BW-dosing for adults in terms of the time 
a patient needs to reach the target C0 [55,74]. Considering 
clinical outcomes of tacrolimus and toxicity, e.g. allograft rejec
tion, onset of PTDM and the incidence of infections, no differ
ence was observed between algorithm-based dosing and 
conventional BW-dosing with TDM. If this can be attributed 
to a lack of superiority of dosing algorithms themselves, an 
underpowered study, or to current questions regarding the 
precision of whole-blood tacrolimus C0, has yet to be 
answered. From a theoretical point of view, clinical outcomes 
of tacrolimus toxicity might better correlate with unbound 
plasma or intracellular tacrolimus concentrations instead of 
whole-blood concentrations. In order to test and implement 

dosing algorithms for these concentrations in the clinic, target 
ranges first have to be determined.

5. Expert opinion

The starting dose of tacrolimus is based exclusively on BW in 
the majority of settings [48,49]. TDM is accepted as the solu
tion to any issues with the initial dose, although this practice 
was recently discussed [7,91]. Many popPK models have been 
developed over the years trying to change the current stan
dard practice, but only a few were prospectively tested. Some 
demonstrated to be significantly better than BW-based dosing 
[55,74]. However, a few did bring to light the difficulties with 
modeling. Namely, misprediction errors in the model itself 
causing harm via over-exposure to tacrolimus [83], or physi
cians changing the recommended dose due to it being too 
high/low in their eyes [74], both highlighting the importance 
of properly validating algorithms before using them. While 
changing the dose may sound like a purely negative event, 
it can sometimes be beneficial, and prevent possible negative 
outcomes. Despite the difficulties, a few points were found 
that should be noted for the future. In adults, there may be 
a need for lower weight-based doses for obese patients and 
CYP3A non-expressers [55], and for pediatric patients, higher 
weight-doses for lower BW and CYP3A expressers [83]. As is 
evident, the latter two studies came to the same conclusion 
regarding dosing, mainly the role of CYP3A combined 
with BW.

The developed and prospectively tested dosing algorithms 
are not yet beneficial in limiting tacrolimus-related toxicity. 
A possible question is the correlation between the measured 
C0 and toxicity, since patients that have concentrations in the 
therapeutic window still develop adverse events. As tacroli
mus CL differs greatly between individuals and patients with 
a higher CL requires a higher dose for a specific target range 
(fast metabolizers), these patients are possibly exposed to 
high tacrolimus peak concentrations (Cmax) in the first hours 
after oral administration [92]. The Cmax is not routinely mea
sured when performing TDM of tacrolimus. AUC could also be 
an important target, since the AUC in a fast metabolizer would 
be relatively high compared to a slower metabolizer with the 
same C0. This would also result in a higher Cmax. Moreover, 
other matrices should be considered which might better cor
relate with tacrolimus toxicity than the whole-blood concen
tration, e.g. unbound plasma (the therapeutically active 
tacrolimus [14]) or intra-lymphocytic tacrolimus concentra
tions (pharmacologically active fraction at the site of action 
[17,18]). The first popPK model for the intra-lymphocytic con
centration of tacrolimus has been developed [61], however no 
target concentration for intracellular tacrolimus is (yet) known. 
An obstacle to obtain such target concentrations is the need 
for specific and sensitive biomarkers to rely on, such as the 
promising minimally invasive biomarker donor-derived cell- 
free DNA [93].

In this review, popPK models have been divided into pediatric 
and adult models. Often, in both groups, the same covariates 
were tested and similar conclusions were drawn. However, we 
deemed it important to separate adult from pediatric models 
due to the many known physiological differences between
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children and adults, such as the age-induced decrease in tacro
limus CL [82]. Half of the identified pediatric algorithms found 
BW and/or age to be significant on tacrolimus CL [83,85], which 
was not often the case for the identified adult algorithms. 
However, other studies demonstrated that elderly recipients 
(>65 years) have higher tacrolimus pre-dose concentrations 
when given the same dose as their younger adult counterparts 
[40]. Furthermore, pediatric studies are much fewer in number 
[82–85], which adds to the importance of separating the models 
so that the small quantities of data are fully covered.

While prospective testing would be ideal, validation is often 
the first step. The issue that many models share is the lack of 
external validation in a truly independent dataset, except for 
five studies [57,58,72,82,85]. This lack of external validation may 
impact the performance of popPK models in RCTs. Some stu
dies solved this by separating their patients into a model- 
building group and a validation group [59,64–66,73]. External 
validation should be the norm, to allow the model to show 
generalizability, even if this is only in the same ethnic popula
tion. Although the starting dose algorithms in adult kidney 
transplant recipients developed in the same ethnic population 
demonstrated different simulated C0 (Figure 2; Caucasian popu
lation [57,58], Chinese population [63,64], Tunisian population 
[59,62]). In addition, studies often use data from past trials, 
making them unable to obtain additional samples and/or infor
mation or rely on pre-dose concentrations only.

Along with validation, the availability of information on intra- 
patient variability is drastically different among studies. Most algo
rithms contain many tacrolimus concentrations per person 
[57,58,62,63,65,66,69–71,82–84]. However, the issue comes up 
with studies where there is barely more than one value per person 
[56]. This might not be of importance for a starting dose algorithm, 
as this will leave the intra-patient variability out of the equation 
since you do not know on beforehand if a patient will have 
relatively high or low concentrations. However, the variability will 
determine the wideness of the range of concentrations, and the 
range will thus be smaller if most of the variability is explained by 
incorporated covariates. The inter-patient variability will be of issue 
in MIPD, when previous C0 will be taken into account. While inter- 
individual variability can be addressed (e.g. by determining indivi
dual clearance or performing post-hoc Bayesian analysis), the intra- 
individual variability cannot be addressed; hence, it could cause 
issues with clinical application of the model, as it will do for TDM.

Moreover, this review focused on popPK models. However, 
modeling is expanding quickly and other types of models 
should be considered. A clearer choice could be to include 
pharmacodynamics in the model, to obtain a full picture of the 
drug in the body [94]. Apart from this, there are also artificial 
intelligence (AI) and machine learning (ML) based models 
being developed [95–97], possibly able to identify new 
unknown (clusters) of impactful variables to improve models. 
Furthermore, with the rise in diversity and migration, a popPK 
model built for the current population may quickly become 
outdated in a dynamic patient population. In addition to 
being focused on popPK modeling, our review used dosing 
algorithms or converted CL algorithms into dosing. 
A drawback of this is that it ignores the effect of covariates 

on Vd, where Vd mostly has it influence on the Cmax, which 
can be of importance for tacrolimus-induced toxicity.

Lastly, the need for models or other methods for effec
tive drug dosing will only increase in the coming years. 
Recent trends toward lower tacrolimus exposure or very 
low tacrolimus targets, when combined with everolimus 
and drug individualization, the need for clinical tools to 
avoid underexposure will probably increase. Whether this 
will be popPK models, AI, ML, or a combination of all three, 
only time will tell. However, creating a model is only half the 
challenge. The second half being the implementation of 
bedside design computer programs. The issue that arises 
here is that usage of such programs may not be suited for 
individuals without popPK modeling and/or mathematical 
experience. An attractive app/interface may thus be a good 
way to let physicians get involved in the action of predict
ing doses. This problem has been solved by the Limoges 
modeling group with their online expert system, where 
AUCs are determined by PK modeling and Bayesian estima
tion [98]. As we have mentioned above, some physicians are 
not trusting of the model (the black box) making the deci
sions [74], so a change in mind-set also remains part of the 
challenge.

The future of dosing algorithms for tacrolimus almost certainly 
includes some of the covariates we have seen here, even if they are 
not in their current models. With this in mind, we implore physi
cians not to discount a model from the start. However, creators of 
models should work with the physicians to address any concerns 
and keep the patient’s best interest as the top priority, along with 
conducting prospective validation of their models.
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