145 research outputs found
Preterm birth and neonatal white matter microstructure in in-vivo reconstructed fiber tracts among audiovisual integration brain regions.
Individuals born preterm are at risk of developing a variety of sequelae. Audiovisual integration (AVI) has received little attention despite its facilitating role in the development of socio-cognitive abilities. The present study assessed the association between prematurity and in-vivo reconstructed fiber bundles among brain regions relevant for AVI. We retrieved data from 63 preterm neonates enrolled in the Developing Human Connectome Project (http://www.developingconnectome.org/) and matched them with 63 term-born neonates from the same study by means of propensity score matching. We performed probabilistic tractography, DTI and NODDI analysis on the traced fibers. We found that specific DTI and NODDI metrics are significantly associated with prematurity in neonates matched for postmenstrual age at scan. We investigated the spatial overlap and developmental order of the reconstructed tractograms between preterm and full-term neonates. Permutation-based analysis revealed significant differences in dice similarity coefficients and developmental order between preterm and full term neonates at the group level. Contrarily, no group differences in the amount of interindividual variability of DTI and NODDI metrics were observed. We conclude that microstructural detriment in the reconstructed fiber bundles along with developmental and morphological differences are likely to contribute to disadvantages in AVI in preterm individuals
First-principles extrapolation method for accurate CO adsorption energies on metal surfaces
We show that a simple first-principles correction based on the difference
between the singlet-triplet CO excitation energy values obtained by DFT and
high-level quantum chemistry methods yields accurate CO adsorption properties
on a variety of metal surfaces.
We demonstrate a linear relationship between the CO adsorption energy and the
CO singlet-triplet splitting, similar to the linear dependence of CO adsorption
energy on the energy of the CO 2* orbital found recently {[Kresse {\em et
al.}, Physical Review B {\bf 68}, 073401 (2003)]}. Converged DFT calculations
underestimate the CO singlet-triplet excitation energy ,
whereas coupled-cluster and CI calculations reproduce the experimental . The dependence of on is used
to extrapolate for the top, bridge and hollow sites for the
(100) and (111) surfaces of Pt, Rh, Pd and Cu to the values that correspond to
the coupled-cluster and CI value. The correction
reproduces experimental adsorption site preference for all cases and obtains
in excellent agreement with experimental results.Comment: Table sent as table1.eps. 3 figure
An Intact Kidney Slice Model to Investigate Vasa Recta Properties and Function in situ
Background: Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. Methods: Confocal microscopy was used to image calcein, propidium iodide and Hoechst labelling in ‘live’ kidney slices, to determine tubular and vascular cell viability and morphology. DIC video-imaging of live kidney slices was employed to investigate pericyte-mediated real-time changes in vasa recta diameter. Results: Pericytes were identified on vasa recta and their morphology and density were characterized in the medulla. Pericyte-mediated changes in vasa recta diameter (10–30%) were evoked in response to bath application of vasoactive agents (norepinephrine, endothelin-1, angiotensin-II and prostaglandin E2) or by manipulating endogenous vasoactive signalling pathways (using tyramine, L-NAME, a cyclo-oxygenase (COX-1) inhibitor indomethacin, and ATP release). Conclusions: The live kidney slice model is a valid complementary technique for investigating vasa recta function in situ and the role of pericytes as regulators of vasa recta diameter. This technique may also be useful in exploring the role of tubulovascular crosstalk in regulation of medullary blood flow
Effects of Aronia melanocarpa fruit juice on exploratory behaviour and locomotor activity in rats
The main bioactive substances in Aronia melanocarpa fruit juice (AMFJ) are polyphenols (flavonoids, procyanidins, and phenolic acids). A great number of polyphenols are able to traverse the blood-brain barrier. In recent years more attention is drawn to the ability of these substances to influence central nervous system functions. The aim of the present study was to investigate the effects of AMFJ on exploratory behaviour and locomotor activity in male Wistar rats. AMFJ was administered orally for 7, 14, 21, and 30 days at three increasing doses (2.5, 5, and 10 ml kg−1). The changes in exploratory behaviour and locomotor activity were recorded in an Opto Varimex apparatus. It was found that the low doses of AMFJ (2.5 and 5 ml kg−1) for all treatment periods did not significantly affect exploratory behaviour and locomotor activity of rats compared to the saline-treated controls. AMFJ at the highest dose of 10 ml kg−1 had no significant effect on exploration and locomotion for the treatment periods of 7 and 14 days, while for the periods of 21 and 30 days it significantly decreased the number of horizontal and vertical movements, which might be the result of a sedative effect. At all the doses and testing periods, AMFJ did not disturb the progressive decrease in motor behaviour, suggesting habituation
Foraminiferal assemblages as palaeoenvironmental bioindicators in Late Jurassic epicontinental platforms: relation with trophic conditions
Foraminiferal assemblages from the neritic environment reveal the palaeoecological impact of nutrient types in relation to shore distance and sedimentary setting. Comparatively proximal siliciclastic settings from the Boreal Domain (Brora section, Eastern Scotland) were dominated by inner−shelf primary production in the water column or in sea bottom, while in relatively seawards mixed carbonate−siliciclastic settings from the Western Tethys (Prebetic, Southern Spain), nutrients mainly derived from the inner−shelf source. In both settings, benthic foraminiferal assemblages increased in diversity and proportion of epifauna from eutrophic to oligotrophic conditions. The proximal setting example (Brora Brick Clay Mb.) corresponds to Callovian offshore shelf deposits with a high primary productivity, bottom accumulation of organic matter, and a reduced sedimentation rate for siliciclastics. Eutrophic conditions favoured some infaunal foraminifera. Lately, inner shelf to shoreface transition areas (Fascally Siltstone Mb.), show higher sedimentation rates and turbidity, reducing euphotic−zone range depths and primary production, and then deposits with a lower organic matter content (high−mesotrophic conditions). This determined less agglutinated infaunal foraminifera content and increasing calcitic and aragonitic epifauna, and calcitic opportunists (i.e., Lenticulina). The comparatively distal setting of the Oxfordian example (Prebetic) corresponds to: (i) outer−shelf areas with lower nutrient input (relative oligotrophy) and organic matter accumulation on comparatively firmer substrates (lumpy lithofacies group) showing dominance of calcitic epifaunal foraminifera, and (ii) mid−shelf areas with a higher sedimentation rate and nutrient influx (low−mesotrophic conditions) favouring potentially deep infaunal foraminifers in comparatively unconsolidated and nutrient−rich substrates controlled by instable redox boundary (marl−limestone rhythmite lithofacies).This research was carried out with the financial support of projects CGL2005−06636−C0201 and CGL2005−01316/BTE, and University of Oslo, Norway−Statoil cooperation. M.R. holds a Juan de la Cierva grant from the Ministry of Science and Technology of Spain
The International Virus Bioinformatics Meeting 2020.
The International Virus Bioinformatics Meeting 2020 was originally planned to take place in Bern, Switzerland, in March 2020. However, the COVID-19 pandemic put a spoke in the wheel of almost all conferences to be held in 2020. After moving the conference to 8-9 October 2020, we got hit by the second wave and finally decided at short notice to go fully online. On the other hand, the pandemic has made us even more aware of the importance of accelerating research in viral bioinformatics. Advances in bioinformatics have led to improved approaches to investigate viral infections and outbreaks. The International Virus Bioinformatics Meeting 2020 has attracted approximately 120 experts in virology and bioinformatics from all over the world to join the two-day virtual meeting. Despite concerns being raised that virtual meetings lack possibilities for face-to-face discussion, the participants from this small community created a highly interactive scientific environment, engaging in lively and inspiring discussions and suggesting new research directions and questions. The meeting featured five invited and twelve contributed talks, on the four main topics: (1) proteome and RNAome of RNA viruses, (2) viral metagenomics and ecology, (3) virus evolution and classification and (4) viral infections and immunology. Further, the meeting featured 20 oral poster presentations, all of which focused on specific areas of virus bioinformatics. This report summarizes the main research findings and highlights presented at the meeting
Mega-analysis of association between obesity and cortical morphology in bipolar disorders:ENIGMA study in 2832 participants
Background: Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact. Methods: We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations. Results: BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI. Conclusions: We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.</p
Virtual Ontogeny of Cortical Growth Preceding Mental Illness
Background: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. Methods: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. Results: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. Conclusions: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy
- …