24 research outputs found

    The ultrastructural distribution of prestin in outer hair cells: a post-embedding immunogold investigation of low-frequency and high-frequency regions of the rat cochlea

    Get PDF
    Outer hair cells (OHCs) of the mammalian cochlea besides being sensory receptors also generate force to amplify sound‐induced displacements of the basilar membrane thus enhancing auditory sensitivity and frequency selectivity. This force generation is attributable to the voltage‐dependent contractility of the OHCs underpinned by the motile protein, prestin. Prestin is located in the basolateral wall of OHCs and is thought to alter its conformation in response to changes in membrane potential. The precise ultrastructural distribution of prestin was determined using post‐embedding immunogold labelling and the density of the labelling was compared in low‐frequency and high‐frequency regions of the cochlea. The labelling was confined to the basolateral plasma membrane in hearing rats but declined towards the base of the cells below the nucleus. In pre‐hearing animals, prestin labelling was lower in the membrane and also occurred in the cytoplasm, presumably reflecting its production during development. The densities of labelling in low‐frequency and high‐frequency regions of the cochlea were similar. Non‐linear capacitance, thought to reflect charge movements during conformational changes in prestin, was measured in OHCs in isolated cochlear coils of hearing animals. The OHC non‐linear capacitance in the same regions assayed in the immunolabelling was also similar in both the apex and base, with charge densities of 10 000/μm2 expressed relative to the lateral membrane area. The results suggest that prestin density, and by implication force production, is similar in low‐frequency and high‐frequency OHCs

    Structure and Function of the Hair Cell Ribbon Synapse

    Get PDF
    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years

    Researching COVID to enhance recovery (RECOVER) pregnancy study: Rationale, objectives and design

    Get PDF
    Importance Pregnancy induces unique physiologic changes to the immune response and hormonal changes leading to plausible differences in the risk of developing post-acute sequelae of SARS-CoV-2 (PASC), or Long COVID. Exposure to SARS-CoV-2 during pregnancy may also have long-term ramifications for exposed offspring, and it is critical to evaluate the health outcomes of exposed children. The National Institutes of Health (NIH) Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC aims to evaluate the long-term sequelae of SARS-CoV-2 infection in various populations. RECOVER-Pregnancy was designed specifically to address long-term outcomes in maternal-child dyads. Methods RECOVER-Pregnancy cohort is a combined prospective and retrospective cohort that proposes to enroll 2,300 individuals with a pregnancy during the COVID-19 pandemic and their offspring exposed and unexposed in utero, including single and multiple gestations. Enrollment will occur both in person at 27 sites through the Eunice Kennedy Shriver National Institutes of Health Maternal-Fetal Medicine Units Network and remotely through national recruitment by the study team at the University of California San Francisco (UCSF). Adults with and without SARS-CoV-2 infection during pregnancy are eligible for enrollment in the pregnancy cohort and will follow the protocol for RECOVER-Adult including validated screening tools, laboratory analyses and symptom questionnaires followed by more in-depth phenotyping of PASC on a subset of the overall cohort. Offspring exposed and unexposed in utero to SARS-CoV-2 maternal infection will undergo screening tests for neurodevelopment and other health outcomes at 12, 18, 24, 36 and 48 months of age. Blood specimens will be collected at 24 months of age for SARS-CoV-2 antibody testing, storage and anticipated later analyses proposed by RECOVER and other investigators. Discussion RECOVER-Pregnancy will address whether having SARS-CoV-2 during pregnancy modifies the risk factors, prevalence, and phenotype of PASC. The pregnancy cohort will also establish whether there are increased risks of adverse long-term outcomes among children exposed in utero

    Optimizing the growth of forage and grain legumes on low pH soils through the application of superior Rhizobium leguminosarum biovar viciae strains

    No full text
    Climate variability and current farming practices have led to declining soil fertility and pH, with a heavy reliance on fertilizers and herbicides. The addition of forage and grain legumes to farming systems not only improves soil health but also increases farm profitability through nitrogen (N) fertilizer cost offsets. However, the formation of effective symbioses between legumes and rhizobia can be unreliable and is considered at risk when combined with dry sowing practices such as those that have been designed to obviate effects of climate change. This research was initiated to improve the robustness of the legume/rhizobia symbiosis in low pH, infertile and dry soils. Production from two cultivars of field pea (Pisum sativum) and two species of vetch (Vicia spp.), and symbiotic outcomes when inoculated with a range of experimental rhizobial strains (Rhizobium leguminosarum biovar viciae), was assessed in broad acre field trials which simulated farmer practice. New rhizobia strains increased nodulation, N fixation, produced more biomass and higher seed yield than comparator commercial strains. Strain WSM4643 also demonstrated superior survival when desiccated compared to current commercial strains in the laboratory and on seed when delivered as inoculant in peat carriers. WSM4643 is a suitable prospect for a commercial inoculant in Australia and other agricultural areas of the world where growing peas and vetch on soils generally considered problematic for this legume/rhizobia symbiosis. A particular advantage of WSM4643 may be that it potentiates sowing inoculated legumes into dry soil, which is a contemporary response by farmers to climate variation

    Progressive hearing loss and gradual deterioration of sensory hair bundles in the ears of mice lacking the actin-binding protein Eps8L2

    No full text
    Mechanotransduction in the mammalian auditory system depends on mechanosensitive channels in the hair bundles that project from the apical surface of the sensory hair cells. Individual stereocilia within each bundle contain a core of tightly packed actin filaments, whose length is dynamically regulated during development and in the adult. We show that the actin-binding protein epidermal growth factor receptor pathway substrate 8 (Eps8)L2, a member of the Eps8-like protein family, is a newly identified hair bundle protein that is localized at the tips of stereocilia of both cochlear and vestibular hair cells. It has a spatiotemporal expression pattern that complements that of Eps8. In the cochlea, whereas Eps8 is essential for the initial elongation of stereocilia, Eps8L2 is required for their maintenance in adult hair cells. In the absence of both proteins, the ordered staircase structure of the hair bundle in the cochlea decays. In contrast to the early profound hearing loss associated with an absence of Eps8, Eps8L2 null-mutant mice exhibit a late-onset, progressive hearing loss that is directly linked to a gradual deterioration in hair bundle morphology. We conclude that Eps8L2 is required for the long-term maintenance of the staircase structure and mechanosensory function of auditory hair bundles. It complements the developmental role of Eps8 and is a candidate gene for progressive age-related hearing loss

    Progressive hearing loss and gradual deterioration of sensory hair bundles in the ears of mice lacking the actin-binding protein Eps8L2.

    No full text
    Mechanotransduction in the mammalian auditory system depends on mechanosensitive channels in the hair bundles that project from the apical surface of the sensory hair cells. Individual stereocilia within each bundle contain a core of tightly packed actin filaments, whose length is dynamically regulated during development and in the adult. We show that the actin-binding protein epidermal growth factor receptor pathway substrate 8 (Eps8)L2, a member of the Eps8-like protein family, is a newly identified hair bundle protein that is localized at the tips of stereocilia of both cochlear and vestibular hair cells. It has a spatiotemporal expression pattern that complements that of Eps8. In the cochlea, whereas Eps8 is essential for the initial elongation of stereocilia, Eps8L2 is required for their maintenance in adult hair cells. In the absence of both proteins, the ordered staircase structure of the hair bundle in the cochlea decays. In contrast to the early profound hearing loss associated with an absence of Eps8, Eps8L2 null-mutant mice exhibit a late-onset, progressive hearing loss that is directly linked to a gradual deterioration in hair bundle morphology. We conclude that Eps8L2 is required for the long-term maintenance of the staircase structure and mechanosensory function of auditory hair bundles. It complements the developmental role of Eps8 and is a candidate gene for progressive age-related hearing loss
    corecore