382 research outputs found

    Dynamical electron transport through a nanoelectromechanical wire in a magnetic field

    Full text link
    We investigate dynamical transport properties of interacting electrons moving in a vibrating nanoelectromechanical wire in a magnetic field. We have built an exactly solvable model in which electric current and mechanical oscillation are treated fully quantum mechanically on an equal footing. Quantum mechanically fluctuating Aharonov-Bohm phases obtained by the electrons cause nontrivial contribution to mechanical vibration and electrical conduction of the wire. We demonstrate our theory by calculating the admittance of the wire which are influenced by the multiple interplay between the mechanical and the electrical energy scales, magnetic field strength, and the electron-electron interaction

    Resonant tunneling and the multichannel Kondo problem: the quantum Brownian motion description

    Full text link
    We study mesoscopic resonant tunneling as well as multichannel Kondo problems by mapping them to a first-quantized quantum mechanical model of a particle moving in a multi-dimensional periodic potential with Ohmic dissipation. From a renormalization group analysis, we obtain phase diagrams of the quantum Brownian motion model with various lattice symmetries. For a symmorphic lattice, there are two phases at T=0: a localized phase in which the particle is trapped in a potential minimum, and a free phase in which the particle is unaffected by the periodic potential. For a non-symmorphic lattice, however, there may be an additional intermediate phase in which the particle is neither localized nor completely free. The fixed point governing the intermediate phase is shown to be identical to the well-known multichannel Kondo fixed point in the Toulouse limit as well as the resonance fixed point of a quantum dot model and a double-barrier Luttinger liquid model. The mapping allows us to compute the fixed-poing mobility μ\mu^* of the quantum Brownian motion model exactly, using known conformal-field-theory results of the Kondo problem. From the mobility, we find that the peak value of the conductance resonance of a spin-1/2 quantum dot problem is given by e2/2he^2/2h. The scaling form of the resonance line shape is predicted

    Resonant Tunneling Between Quantum Hall Edge States

    Full text link
    Resonant tunneling between fractional quantum Hall edge states is studied in the Luttinger liquid picture. For the Laughlin parent states, the resonance line shape is a universal function whose width scales to zero at zero temperature. Extensive quantum Monte Carlo simulations are presented for ν=1/3\nu = 1/3 which confirm this picture and provide a parameter-free prediction for the line shape.Comment: 14 pages , revtex , IUCM93-00

    Extensive translation of circular RNAs driven by N6-methyladenosine

    Get PDF
    Extensive pre-mRNA back-splicing generates numerous circular RNAs (circRNAs) in human transcriptome. However, the biological functions of these circRNAs remain largely unclear. Here we report that N6-methyladenosine (m6A), the most abundant base modification of RNA, promotes efficient initiation of protein translation from circRNAs in human cells. We discover that consensus m6A motifs are enriched in circRNAs and a single m6A site is sufficient to drive translation initiation. This m6A-driven translation requires initiation factor eIF4G2 and m6A reader YTHDF3, and is enhanced by methyltransferase METTL3/14, inhibited by demethylase FTO, and upregulated upon heat shock. Further analyses through polysome profiling, computational prediction and mass spectrometry reveal that m6A-driven translation of circRNAs is widespread, with hundreds of endogenous circRNAs having translation potential. Our study expands the coding landscape of human transcriptome, and suggests a role of circRNA-derived proteins in cellular responses to environmental stress

    Entangled Husimi distribution and Complex Wavelet transformation

    Full text link
    Based on the proceding Letter [Int. J. Theor. Phys. 48, 1539 (2009)], we expand the relation between wavelet transformation and Husimi distribution function to the entangled case. We find that the optical complex wavelet transformation can be used to study the entangled Husimi distribution function in phase space theory of quantum optics. We prove that the entangled Husimi distribution function of a two-mode quantum state |phi> is just the modulus square of the complex wavelet transform of exp{-(|eta|^2)/2} with phi(eta)being the mother wavelet up to a Gaussian function.Comment: 7 page

    The Non-Gaussianity of Racetrack Inflation Models

    Full text link
    In this paper, we use the result in [7] to calculate the non-Gaussianity of the racetrack models in [3, 5]. The two models give different non- Gaussianities. Both of them are reasonable.Comment: 8 pages, no figures; PACS and Keywords are added; mistake is correcte

    Quasiparticle Interactions in Fractional Quantum Hall Systems: Justification of Different Hierarchy Schemes

    Full text link
    The pseudopotentials describing the interactions of quasiparticles in fractional quantum Hall (FQH) states are studied. Rules for the identification of incompressible quantum fluid ground states are found, based upon the form of the pseudopotentials. States belonging to the Jain sequence nu=n/(1+2pn), where n and p are integers, appear to be the only incompressible states in the thermodynamic limit, although other FQH hierarchy states occur for finite size systems. This explains the success of the composite Fermion picture.Comment: RevTeX, 10 pages, 7 EPS figures, submitted fo Phys.Rev.

    Carbon response of tundra ecosystems to advancing greenup and snowmelt in Alaska

    Get PDF
    The ongoing disproportionate increases in temperature and precipitation over the Arctic region may greatly alter the latitudinal gradients in greenup and snowmelt timings as well as associated carbon dynamics of tundra ecosystems. Here we use remotely-sensed and ground-based datasets and model results embedding snowmelt timing in phenology at seven tundra flux tower sites in Alaska during 2001–2018, showing that the carbon response to early greenup or delayed snowmelt varies greatly depending upon local climatic limits. Increases in net ecosystem productivity (NEP) due to early greenup were amplified at the higher latitudes where temperature and water strongly colimit vegetation growth, while NEP decreases due to delayed snowmelt were alleviated by a relief of water stress. Given the high likelihood of more frequent delayed snowmelt at higher latitudes, this study highlights the importance of understanding the role of snowmelt timing in vegetation growth and terrestrial carbon cycles across warming Arctic ecosystems
    corecore