8 research outputs found

    A serological marker of the N-terminal neoepitope generated during LOXL2 maturation is elevated in patients with cancer or idiopathic pulmonary fibrosis

    No full text
    Objectives: Lysyl oxidase like 2 (LOXL2) is associated with poor prognosis in idiopathic pulmonary disease (IPF) and cancer. We developed an Enzyme-linked immunosorbent assay (ELISA) targeting the LOXL2 neo-epitope generated through the release of the signal peptide during LOXL2 maturation. Design and methods: An ELISA targeting the N-terminal site of the human LOXL2 was developed including technical optimization and validation steps. Serum LOXL2 was measured in patients with breast, colorectal, lung, ovarian, pancreatic and prostate cancer, melanoma, IPF and in healthy controls (n = 16). Results: A technically robust and specific assay was developed. LOXL2 was detectable in serum from healthy controls and showed reactivity towards recombinant LOXL2. Compared to controls, LOXL2 levels were significantly (p  0.001) Conclusions: A specific ELISA towards the N-terminal neo-epitope site in LOXL2 was developed which detected significantly elevated serum levels from patients with above-mentioned cancer types or IPF compared to healthy controls. Keywords: Lysyl Oxidase like-2, Neoepitope, Extracellular matrix, Cancer, Idiopathic pulmonary fibrosis, Serological biomarke

    Cathepsin-S degraded decorin are elevated in fibrotic lung disorders – development and biological validation of a new serum biomarker

    No full text
    Abstract Background Decorin is one of the most abundant proteoglycans of the extracellular matrix and is mainly secreted and deposited in the interstitial matrix by fibroblasts where it plays an important role in collagen turnover and tissue homeostasis. Degradation of decorin might disturb normal tissue homeostasis contributing to extracellular matrix remodeling diseases. Here, we present the development and validation of a competitive enzyme-linked immunosorbent assay (ELISA) quantifying a specific fragment of degraded decorin, which has potential as a novel non-invasive serum biomarker for fibrotic lung disorders. Methods A fragment of decorin cleaved in vitro using human articular cartilage was identified by mass-spectrometry (MS/MS). Monoclonal antibodies were raised against the neo-epitope of the cleaved decorin fragment and a competitive ELISA assay (DCN-CS) was developed. The assay was evaluated by determining the inter- and intra-assay precision, dilution recovery, accuracy, analyte stability and interference. Serum levels were assessed in lung cancer patients, patients with idiopathic pulmonary fibrosis (IPF), patients with chronic obstructive pulmonary disease (COPD) and healthy controls. Results The DCN-CS ELISA was technically robust and was specific for decorin cleaved by cathepsin-S. DCN-CS was elevated in lung cancer patients (p < 0.0001) and IPF patients (p < 0.001) when compared to healthy controls. The diagnostic power for differentiating lung cancer patients and IPF patients from healthy controls was 0.96 and 0.77, respectively. Conclusion Cathepsin-S degraded decorin could be quantified in serum using the DCN-CS competitive ELISA. The clinical data indicated that degradation of decorin by cathepsin-S is an important part of the pathology of lung cancer and IPF

    Previous fracture and subsequent fracture risk: a meta-analysis to update FRAX

    No full text
    Summary A large international meta-analysis using primary data from 64 cohorts has quantified the increased risk of fracture associated with a previous history of fracture for future use in FRAX. Introduction The aim of this study was to quantify the fracture risk associated with a prior fracture on an international basis and to explore the relationship of this risk with age, sex, time since baseline and bone mineral density (BMD). Methods We studied 665,971 men and 1,438,535 women from 64 cohorts in 32 countries followed for a total of 19.5 million person-years. The effect of a prior history of fracture on the risk of any clinical fracture, any osteoporotic fracture, major osteoporotic fracture, and hip fracture alone was examined using an extended Poisson model in each cohort. Covariates examined were age, sex, BMD, and duration of follow-up. The results of the different studies were merged by using the weighted β-coefficients. Results A previous fracture history, compared with individuals without a prior fracture, was associated with a significantly increased risk of any clinical fracture (hazard ratio, HR = 1.88; 95% CI = 1.72–2.07). The risk ratio was similar for the outcome of osteoporotic fracture (HR = 1.87; 95% CI = 1.69–2.07), major osteoporotic fracture (HR = 1.83; 95% CI = 1.63–2.06), or for hip fracture (HR = 1.82; 95% CI = 1.62–2.06). There was no significant difference in risk ratio between men and women. Subsequent fracture risk was marginally downward adjusted when account was taken of BMD. Low BMD explained a minority of the risk for any clinical fracture (14%), osteoporotic fracture (17%), and for hip fracture (33%). The risk ratio for all fracture outcomes related to prior fracture decreased significantly with adjustment for age and time since baseline examination. Conclusion A previous history of fracture confers an increased risk of fracture of substantial importance beyond that explained by BMD. The effect is similar in men and women. Its quantitation on an international basis permits the more accurate use of this risk factor in case finding strategies

    Update of the fracture risk prediction tool FRAX: A systematic review of potential cohorts and analysis plan

    No full text
    Summary: We describe the collection of cohorts together with the analysis plan for an update of the fracture risk prediction tool FRAX with respect to current and novel risk factors. The resource comprises 2,138,428 participants with a follow-up of approximately 20 million person-years and 116,117 documented incident major osteoporotic fractures. Introduction: The availability of the fracture risk assessment tool FRAX® has substantially enhanced the targeting of treatment to those at high risk of fracture with FRAX now incorporated into more than 100 clinical osteoporosis guidelines worldwide. The aim of this study is to determine whether the current algorithms can be further optimised with respect to current and novel risk factors. Methods: A computerised literature search was performed in PubMed from inception until May 17, 2019, to identify eligible cohorts for updating the FRAX coefficients. Additionally, we searched the abstracts of conference proceedings of the American Society for Bone and Mineral Research, European Calcified Tissue Society and World Congress of Osteoporosis. Prospective cohort studies with data on baseline clinical risk factors and incident fractures were eligible. Results: Of the 836 records retrieved, 53 were selected for full-text assessment after screening on title and abstract. Twelve cohorts were deemed eligible and of these, 4 novel cohorts were identified. These cohorts, together with 60 previously identified cohorts, will provide the resource for constructing an updated version of FRAX comprising 2,138,428 participants with a follow-up of approximately 20 million person-years and 116,117 documented incident major osteoporotic fractures. For each known and candidate risk factor, multivariate hazard functions for hip fracture, major osteoporotic fracture and death will be tested using extended Poisson regression. Sex- and/or ethnicity-specific differences in the weights of the risk factors will be investigated. After meta-analyses of the cohort-specific beta coefficients for each risk factor, models comprising 10-year probability of hip and major osteoporotic fracture, with or without femoral neck bone mineral density, will be computed. Conclusions: These assembled cohorts and described models will provide the framework for an updated FRAX tool enabling enhanced assessment of fracture risk (PROSPERO (CRD42021227266)).</p
    corecore