23 research outputs found

    Setting a baseline for global urban virome surveillance in sewage

    Get PDF
    The rapid development of megacities, and their growing connectedness across the world is becoming a distinct driver for emerging disease outbreaks. Early detection of unusual disease emergence and spread should therefore include such cities as part of risk-based surveillance. A catch-all metagenomic sequencing approach of urban sewage could potentially provide an unbiased insight into the dynamics of viral pathogens circulating in a community irrespective of access to care, a potential which already has been proven for the surveillance of poliovirus. Here, we present a detailed characterization of sewage viromes from a snapshot of 81 high density urban areas across the globe, including in-depth assessment of potential biases, as a proof of concept for catch-all viral pathogen surveillance. We show the ability to detect a wide range of viruses and geographical and seasonal differences for specific viral groups. Our findings offer a cross-sectional baseline for further research in viral surveillance from urban sewage samples and place previous studies in a global perspective

    An epigenetic switch activates bacterial quorum sensing and horizontal transfer of an integrative and conjugative element

    No full text
    Horizontal transfer of the integrative and conjugative element ICEMlSymR7A converts non-symbiotic Mesorhizobium spp. into nitrogen-fixing legume symbionts. Here, we discover subpopulations of Mesorhizobium japonicum R7A become epigenetically primed for quorum-sensing (QS) and QS-activated horizontal transfer. Isolated populations in this state termed R7A* maintained these phenotypes in laboratory culture but did not transfer the R7A* state to recipients of ICEMlSymR7A following conjugation. We previously demonstrated ICEMlSymR7A transfer and QS are repressed by the antiactivator QseM in R7A populations and that the adjacently-coded DNA-binding protein QseC represses qseM transcription. Here RNA-sequencing revealed qseM expression was repressed in R7A* cells and that RNA antisense to qseC was abundant in R7A but not R7A*. Deletion of the antisense-qseC promoter converted cells into an R7A*-like state. An adjacently coded QseC2 protein bound two operator sites and repressed antisense-qseC transcription. Plasmid overexpression of QseC2 stimulated the R7A* state, which persisted following curing of this plasmid. The epigenetic maintenance of the R7A* state required ICEMlSymR7A-encoded copies of both qseC and qseC2. Therefore, QseC and QseC2, together with their DNA-binding sites and overlapping promoters, form a stable epigenetic switch that establishes binary control over qseM transcription and primes a subpopulation of R7A cells for QS and horizontal transfer

    Small relief shape variations influence spatial variability of soil chemical attributes Pequenas variações das formas de relevo influenciam a variabilidade espacial de atributos químicos do solo

    Get PDF
    Soils with small variations in relief and under the same management system present differentiated spatial variabilities of their attributes. This variability is a function of soil position in the landscape, even if the relief has little expression. The aim of this work was to investigate the effects of relief shape and depth on spatial variability of soil chemical attributes in a Typic Hapludox cultivated with sugar cane at two landscape compartments. Soil samples were collected in the intercrossing points of a grid, in the traffic line, at 0-0.2 m and 0.6-0.8 m depths, comprising a set of 100 georeferenced points. The spatial variabilities of pH, P, K, Ca, Mg, cation exchange capacity and base saturation were quantified. Small relief shape variations lead to differentiated variability in soil chemical attributes as indicated by the dependence on pedoform found for chemical attributes at both 0-0.2 m and 0.6-0.8 m depths. Because of the higher variability, it is advisable to collect large number of samples in areas with concave and convex shapes. Combining relief shapes and geostatistics allows the determination of areas with different spatial variability for soil chemical attributes.<br>Solos submetidos ao mesmo sistema de manejo em locais com pequena variação de relevo, manifestam variabilidade espacial diferenciada de seus atributos. Esta variabilidade é condicionada pela posição dos solos na paisagem ou no declive, mesmo que o relevo seja de pequena expressão. O estudo teve como objetivo avaliar a influência da forma do relevo na variabilidade espacial de atributos químicos em um latossolo cultivado com cana-de-açúcar em dois compartimentos da paisagem. Os solos foram amostrados nos pontos de cruzamento de uma malha, com intervalos regulares de 10 m, perfazendo um total de 100 pontos, nas profundidades de 0-0,2 m e 0,6-0,8 m. Foi avaliado a variabilidade espacial do pH, fósforo (P), potássio (K), cálcio (Ca), magnésio (Mg), acidez potencial (H+Al), capacidade de troca catiônica (CTC) e saturação por bases (V%). Pequenas variações nas formas do relevo condicionaram variabilidade diferenciada para os atributos químicos do solo. Os atributos químicos estudados apresentaram-se dependentes da pedoforma em ambas profundidades estudadas. Um maior número de amostras devem ser coletados em áreas com forma de relevo côncavo e convexo devido à maior variabilidade. O uso conjunto das formas do relevo e geoestatística possibilita definir áreas com diferentes variabilidades espaciais para atributos químicos do solo
    corecore