31 research outputs found
Dark mammoth trunks in the merging galaxy NGC 1316 and a mechanism of cosmic double helices
NGC 1316 is a giant, elliptical galaxy containing a complex network of dark,
dust features. The morphology of these features has been examined in some
detail using a Hubble Space Telescope, Advanced Camera for Surveys image. It is
found that most of the features are constituted of long filaments. There also
exist a great number of dark structures protruding inwards from the filaments.
Many of these structures are strikingly similar to elephant trunks in H II
regions in the Milky Way Galaxy, although much larger. The structures, termed
mammoth trunks, generally are filamentary and often have shapes resembling the
letters V or Y. In some of the mammoth trunks the stem of the Y can be resolved
into two or more filaments, many of which showing signs of being intertwined. A
model of the mammoth trunks, related to a recent theory of elephant trunks, is
proposed. Based on magnetized filaments, the model is capable of giving an
account of the various shapes of the mammoth trunks observed, including the
twined structures.Comment: Accepted for publication in Astrophysics & Space Scienc
The SAMI Galaxy Survey: Cubism and covariance, putting round pegs into square holes
We present a methodology for the regularization and combination of sparse sampled and irregularly gridded observations from fibre-optic multiobject integral field spectroscopy. The approach minimizes interpolation and retains image resolution on combining subpixel dithered data. We discuss the methodology in the context of the Sydney-AAO multiobject integral field spectrograph (SAMI) Galaxy Survey underway at the Anglo-Australian Telescope. The SAMI instrument uses 13 fibre bundles to perform high-multiplex integral field spectroscopy across a 1° diameter field of view. The SAMI Galaxy Survey is targeting ~3000 galaxies drawn from the full range of galaxy environments. We demonstrate the subcritical sampling of the seeing and incomplete fill factor for the integral field bundles results in only a 10 per cent degradation in the final image resolution recovered. We also implement a new methodology for tracking covariance between elements of the resulting data cubes which retains 90 per cent of the covariance information while incurring only a modest increase in the survey data volume
High avidity drives the interaction between the streptococcal C1 phage endolysin, PlyC, with the cell surface carbohydrates of Group A Streptococcus
Endolysin enzymes from bacteriophage cause bacterial lysis by degrading the peptidoglycan cell wall. The streptococcal C1 phage endolysin PlyC, is the most potent endolysin described to date and can rapidly lyse group A, C, and E streptococci. PlyC is known to bind the Group A streptococcal cell wall, but the specific molecular target or the binding site within PlyC remain uncharacterized. Here we report for the first time, that the polyrhamnose backbone of the Group A streptococcal cell wall is the binding target of PlyC. We have also characterized the putative rhamnose binding groove of PlyC and found four key residues that were critical to either the folding or the cell wall binding action of PlyC. Based on our results, we suggest that the interaction between PlyC and the cell wall may not be a high-affinity interaction as previously proposed, but rather a high avidity one, allowing for PlyC's remarkable lytic activity. Resistance to our current antibiotics is reaching crisis levels and there is an urgent need to develop the antibacterial agents with new modes of action. A detailed understanding of this potent endolysin may facilitate future developments of PlyC as a tool against the rise of antibiotic resistance.Bio-organic Synthesi
Galaxy And Mass Assembly (GAMA) : galaxy environments and star formation rate variations
We present a detailed investigation into the effects of galaxy environment on their star formation rates (SFRs) using galaxies observed in the Galaxy And Mass Assembly (GAMA) survey. We use three independent volume-limited samples of galaxies within z < 0.2 and Mr < â17.8. We investigate the known SFRâdensity relationship and explore in detail the dependence of SFR on stellar mass and density. We show that the SFRâdensity trend is only visible when we include the passive galaxy population along with the star-forming population. This SFRâdensity relation is absent when we consider only the star-forming population of galaxies, consistent with previous work. While there is a strong dependence of the EWHα on density we find, as in previous studies, that these trends are largely due to the passive galaxy population and this relationship is absent when considering a âstar-formingâ sample of galaxies. We find that stellar mass has the strongest influence on SFR and EWHα with the environment having no significant effect on the star formation properties of the star-forming population. We also show that the SFRâdensity relationship is absent for both early- and late-type star-forming galaxies. We conclude that the stellar mass has the largest impact on the current SFR of a galaxy, and any environmental effect is not detectable. The observation that the trends with density are due to the changing morphology fraction with density implies that the time-scales must be very short for any quenching of the SFR in infalling galaxies. Alternatively, galaxies may in fact undergo predominantly in situ evolution where the infall and quenching of galaxies from the field into dense environments is not the dominant evolutionary mode