12 research outputs found

    Reaction time as a stochastic process implemented by functional brain networks

    No full text
    Many studies focus on anatomical brain connectivity in an effort to explain the effect of practice on reaction time (RT) that is observed in many cognitive tasks. In this commentary, we suggest that RT reflects a stochastic process that varies in each single repetition of any cognitive task and cannot be attributed only to anatomical properties of the underlying neuronal circuit. Based on recent evidence from Magnetoencephalographic, Electroencephalographic, and fMRI studies, we further propose that the functional properties of key brain areas and their self-organization into functional connectivity networks contribute to the RT and could also explain the effects of training on the distribution of the RT. © 2016 Informa UK Limited, trading as Taylor & Francis Group

    Granger causality analysis reveals distinct spatio-temporal connectivity patterns in motor and perceptual visuo-spatial working memory

    No full text
    We employed spectral Granger causality analysis on a full set of 56 electroencephalographic recordings acquired during the execution of either a 2D movement pointing or a perceptual (yes/no) change detection task with memory and non-memory conditions. On the basis of network characteristics across frequency bands, we provide evidence for the full dissociation of the corresponding cognitive processes. Movement-memory trial types exhibited higher degree nodes during the first 2 s of the delay period, mainly at central, left frontal and right-parietal areas. Change detection-memory trial types resulted in a three-peak temporal pattern of the total degree with higher degree nodes emerging mainly at central, right frontal, and occipital areas. Functional connectivity networks resulting from non-memory trial types were characterized by more sparse structures for both tasks. The movement-memory trial types encompassed an apparent coarse flow from frontal to parietal areas while the opposite flow from occipital, parietal to central and frontal areas was evident for the change detection-memory trial types. The differences among tasks and conditions were more profound in α (8–12 Hz) and β (12–30 Hz) and less in γ (30–45 Hz) band. Our results favor the hypothesis which considers spatial working memory as a by-product of specific mental processes that engages common brain areas under different network organizations. © 2014 Protopapa, Siettos, Evdokimidis and Smyrnis

    Reaching to virtual targets: The oblique effect reloaded in 3-D

    No full text
    Perceiving and reproducing direction of visual stimuli in 2-D space produces the visual oblique effect, which manifests as increased precision in the reproduction of cardinal compared to oblique directions. A second cognitive oblique effect emerges when stimulus information is degraded (such as when reproducing stimuli from memory) and manifests as a systematic distortion where reproduced directions close to the cardinal axes deviate toward the oblique, leading to space expansion at cardinal and contraction at oblique axes. We studied the oblique effect in 3-D using a virtual reality system to present a large number of stimuli, covering the surface of an imaginary half sphere, to which subjects had to reach. We used two conditions, one with no delay (no-memory condition) and one where a three-second delay intervened between stimulus presentation and movement initiation (memory condition). A visual oblique effect was observed for the reproduction of cardinal directions compared to oblique, which did not differ with memory condition. A cognitive oblique effect also emerged, which was significantly larger in the memory compared to the no-memory condition, leading to distortion of directional space with expansion near the cardinal axes and compression near the oblique axes on the hemispherical surface. This effect provides evidence that existing models of 2-D directional space categorization could be extended in the natural 3-D space. © 2016 IBR

    Amplitude spectrum EEG signal evidence for the dissociation of motor and perceptual spatial working memory in the human brain

    No full text
    This study investigated the question whether spatial working memory related to movement plans (motor working memory) and spatial working memory related to spatial attention and perceptual processes (perceptual spatial working memory) share the same neurophysiological substrate or there is evidence for separate motor and perceptual working memory streams of processing. Towards this aim, ten healthy human subjects performed delayed responses to visual targets presented at different spatial locations. Two tasks were attained, one in which the spatial location of the target was the goal for a pointing movement and one in which the spatial location of the target was used for a perceptual (yes or no) change detection. Each task involved two conditions: a memory condition in which the target remained visible only for the first 250 ms of the delay period and a delay condition in which the target location remained visible throughout the delay period. The amplitude spectrum analysis of the EEG revealed that the alpha (8-12 Hz) band signal was smaller, while the beta (13-30 Hz) and gamma (30-45 Hz) band signals were larger in the memory compared to the non-memory condition. The alpha band signal difference was confined to the frontal midline area; the beta band signal difference extended over the right hemisphere and midline central area, and the gamma band signal difference was confined to the right occipitoparietal area. Importantly, both in beta and gamma bands, we observed a significant increase in the movement-related compared to the perceptual-related memory-specific amplitude spectrum signal in the central midline area. This result provides clear evidence for the dissociation of motor and perceptual spatial working memory. © 2013 Springer-Verlag Berlin Heidelberg

    Single-trial magnetoencephalography signals encoded as an unfolding decision process

    No full text
    The model of a stochastic decision process unfolding in motor and premotor regions of the brain was encoded in single-trial magnetoencephalographic (MEG) recordings while ten healthy subjects performed a sensorimotor Reaction Time (RT) task. The duration of single-trial MEG signals preceding the motor response, recorded over the motor cortex contralateral to the responding hand, co-varied with RT across trials according to the model's prediction. Furthermore, these signals displayed the same properties of a "rising-to-a-fixed-threshold" decision process as posited by the model and observed in the activity of single neurons in the primate cortex. The present findings demonstrate that non-averaged, single-trial MEG recordings can be used to test models of cognitive processes, like decision-making, in humans. © 2011 Elsevier Inc

    The relation of integrated psychological therapy to resting state functional brain connectivity networks in patients with schizophrenia

    No full text
    Functional brain dysconnectivity measured with resting state functional magnetic resonance imaging (rsfMRI) has been linked to cognitive impairment in schizophrenia. This study investigated the effects on functional brain connectivity of Integrated Psychological Therapy (IPT), a cognitive behavioral oriented group intervention program, in 31 patients with schizophrenia. Patients received IPT or an equal intensity non-specific psychological treatment in a non-randomized design. Evidence of improvement in executive and social functions, psychopathology and overall level of functioning was observed after treatment completion at six months only in the IPT treatment group and was partially sustained at one-year follow up. Independent Component Analysis and Isometric Mapping (ISOMAP), a non-linear manifold learning algorithm, were used to construct functional connectivity networks from the rsfMRI data. Functional brain dysconnectivity was observed in patients compared to a group of 17 healthy controls, both globally and specifically including the default mode (DMN) and frontoparietal network (FPN). DMN and FPN connectivity were reversed towards healthy control patterns only in the IPT treatment group and these effects were sustained at follow up for DMN but not FPN. These data suggest the use of rsfMRI as a biomarker for accessing and monitoring the therapeutic effects of cognitive remediation therapy in schizophrenia. © 2021 Elsevier B.V
    corecore