1,921 research outputs found

    On the approach to the critical solution in leading order thin-film coating and rimming flow

    Get PDF
    The approach to the critical solution in leading order coating and rimming flow of a thin fluid film on a uniformly rotating horizontal cylinder is investigated. In particular, it is shown that the weight of the leading order 'full film' solution approaches its critical maximum value with logarithmically infinite slope as the volume flux approaches its critical value

    Blood thicker than water: Kinship, disease prevalence and group size drive divergent patterns of infection risk in a social mammal

    Get PDF
    The importance of social- and kin-structuring of populations for the transmission of wildlife disease is widely assumed but poorly described. Social structure can help dilute risks of transmission for group members, and is relatively easy to measure, but kin-association represents a further level of population sub-structure that is harder to measure, particularly when association behaviours happen underground. Here, using epidemiological and molecular genetic data from a wild, high-density population of the European badger (Meles meles), we quantify the risks of infection with Mycobacterium bovis (the causative agent of tuberculosis) in cubs. The risk declines with increasing size of its social group, but this net dilution effect conceals divergent patterns of infection risk. Cubs only enjoy reduced risk when social groups have a higher proportion of test-negative individuals. Cubs suffer higher infection risk in social groups containing resident infectious adults, and these risks are exaggerated when cubs and infectious adults are closely related. We further identify key differences in infection risk associated with resident infectious males and females. We link our results to parent– offspring interactions and other kin-biased association, but also consider the possibility that susceptibility to infection is heritable. These patterns of infection risk help to explain the observation of a herd immunity effect in badgers following low-intensity vaccination campaigns. They also reveal kinship and kin-association to be important, and often hidden, drivers of disease transmission in social mammals

    Electromagnetic Response of Layered Superconductors with Broken Lattice Inversion Symmetry

    Get PDF
    We investigate the macroscopic effects of charge density waves (CDW) and superconductivity in layered superconducting systems with broken lattice inversion symmetry (allowing for piezoelectricity) such as two dimensional (2D) transition metal dichalcogenides (TMD). We work with the low temperature time dependent Ginzburg-Landau theory and study the coupling of lattice distortions and low energy CDW collective modes to the superconducting order parameter in the presence of electromagnetic fields. We show that superconductivity and piezoelectricity can coexist in these singular metals. Furthermore, our study indicates the nature of the quantum phase transition between a commensurate CDW phase and the stripe phase that has been observed as a function of applied pressure.Comment: 9 pages, 1 figure. Final version. Accepted in Phys.Rev.

    Cut Vertices and Semi-Inclusive Deep Inelastic Processes

    Get PDF
    Cut vertices, a generalization of matrix elements of local operators, are revisited, and an expansion in terms of minimally subtracted cut vertices is formulated. An extension of the formalism to deal with semi-inclusive deep inelastic processes in the target fragmentation region is explicitly constructed. The problem of factorization is discussed in detail.Comment: LaTex2e, 24 pages including 17 postscript figure

    Homological Type of Geometric Transitions

    Full text link
    The present paper gives an account and quantifies the change in topology induced by small and type II geometric transitions, by introducing the notion of the \emph{homological type} of a geometric transition. The obtained results agree with, and go further than, most results and estimates, given to date by several authors, both in mathematical and physical literature.Comment: 36 pages. Minor changes: A reference and a related comment in Remark 3.2 were added. This is the final version accepted for publication in the journal Geometriae Dedicat

    Controlling laser spectra in a phaseonium photonic crystal using maser

    Full text link
    We study the control of quantum resonances in photonic crystals with electromagnetically induced transparency driven by microwave field. In addition to the control laser, the intensity and phase of the maser can alter the transmission and reflection spectra in interesting ways, producing hyperfine resonances through the combined effects of multiple scattering in the superstructure.Comment: 7 pages, 4 figure

    Weight loss and elevated gluconeogenesis from alanine in lung cancer patients

    Get PDF
    BACKGROUND: The role of gluconeogenesis from protein in the pathogenesis of weight loss in lung cancer is unclear. OBJECTIVE: Our aim was to study gluconeogenesis from alanine in lung cancer patients and to analyze its relation to the degree of weight loss. DESIGN: In this cross-sectional study, we used primed-constant infusions of [6,6-(2)H(2)]-D-glucose and [3-(13)C]-L-alanine to assess whole-body glucose and alanine turnover and gluconeogenesis from alanine in weight-losing (WL, n = 9) and weight-stable (WS, n = 10) lung cancer patients and healthy control (n = 15) subjects. RESULTS: Energy intake and plasma alanine concentrations did not differ significantly among the subject groups. Mean (+/-SEM) whole-body glucose production was significantly higher in WL than in WS and control subjects (0.74 +/- 0.06 compared with 0.55 +/- 0.04 and 0.51 +/- 0.04 mmol*kg(-)(1)*h(-)(1), respectively, P < 0.01). Alanine turnover was significantly elevated in WL compared with WS and control subjects (0.57 +/- 0.04 compared with 0.42 +/- 0.05 and 0.40 +/- 0.03 mmol*kg(-)(1)*h(-)(1), respectively, P < 0.01). Gluconeogenesis from alanine was significantly higher in WL than in WS and control subjects (0.47 +/- 0.04 compared with 0.31 +/- 0.04 and 0.29 +/- 0.04 mmol*kg(-)(1)*h(-)(1), respectively, P < 0.01). The degree of weight loss was positively correlated with glucose and alanine turnover and with gluconeogenesis from alanine (r = 0.45 for all, P < 0.01). CONCLUSIONS: Aberrant glucose and alanine metabolism occurred in WL lung cancer patients. These changes were related to the degree of weight loss and not to the presence of lung cancer per se

    Site 1220

    No full text
    Site 1220 (10°10.600´N, 142°45.503´W; 5218 meters below sea level (mbsl); Fig. F1) forms a southerly component of the 56-Ma transect drilled during Leg 199. It is situated about midway between the Clipperton and Clarion Fracture Zones in typical abyssal hill topography. On the basis of regional magnetic anomalies, we anticipated basement age at Site 1220 to be equivalent to Chron C25n (~56 Ma; Cande et al., 1989), slightly older than at Site 1219. At the outset of drilling at Site 1220, our estimate for total sediment depth was ~225 meters below seafloor (mbsf) (Fig. F2). Based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles), Site 1220 should have been located ~3° south of the equator at 56 Ma and in an equatorial position at 40 Ma. Thus, Site 1220 should have been situated underneath the South Equatorial Current in the early Eocene. A nearby piston core (EW9709-13PC) taken during the site survey cruise recovered &gt;16 m of red clay, with the base of the core dated as middle-early Miocene on the basis of radiolarian biostratigraphy (Lyle, 2000). Site 1220 will be used to study equatorial ocean circulation from the late Paleocene through the late Eocene during the early Cenozoic thermal maximum. Sediment records from this site will help to define the calcite compensation depth (CCD) and lysocline during the Paleocene-Eocene and Eocene-Oligocene transitions. In this and other respects, Site 1220 will act as an interesting analog to Site 1218. Both sites are thought to have been located on the equator at ~40 Ma, but the older crustal age anticipated at Site 1220 dictates a greater paleowater depth than for contemporaneous sediments accumulating at Site 1218

    Site 1222

    No full text
    Site 1222 (13°48.98´N, 143°53.35´W; 4989 meters below sea level [mbsl]; Fig. F1) forms a south-central component of the 56-Ma transect drilled during Leg 199 and is situated ~2° south of the Clarion Fracture Zone in typical abyssal hill topography. On the basis of regional magnetic anomalies, we anticipated basement age at Site 1222 to be equivalent to Chron C25r or Chron C25n (~56-57 Ma) (Cande et al., 1989), which is slightly older than at Site 1219. At the outset of drilling at Site 1222, our estimate for total sediment thickness was ~115 m (Fig. F2). Based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles) Site 1222 should have been located ~1° north of the equator at 56 Ma and ~4°N at 40 Ma. A nearby gravity core (EW9709-17GC), taken during the site survey cruise, recovered &gt;5 m of red clay with a late-middle Miocene age on the basis of radiolarian biostratigraphy (Lyle, 2000). Deep Sea Drilling Project (DSDP) Site 42 located ~4° east of Site 1222, was not drilled to basement but contains a thin sedimentary section (~100 m thick) of upper Oligocene nannofossil ooze through middle Eocene radiolarian nannofossil ooze. In turn, DSDP Site 162 lies ~1° north of DSDP Site 42 and is situated on young crust (49 Ma) that contains ~150 m of clayey radiolarian and nannofossil oozes of early Oligocene-middle Eocene age. Site 1222 will be used to study the position of the Intertropical Convergence Zone in the late Eocene and Oligocene, to sample late Paleocene and early Eocene sediments in the central tropical Pacific Ocean, and to help determine whether or not there has been significant southward movement of the hotspots with respect to the spin axis prior to 40 Ma

    Site 1216

    No full text
    Site 1216 (21°27.16´N, 139°28.79´W; 5152 meters below sea level [mbsl]; Fig. F1) is situated in abyssal hill topography south of the Molokai Fracture Zone and two small associated unnamed parasitic fracture zones (Fig. F2). Based on magnetic lineations, Site 1216 appears to be situated on normal ocean crust formed during the C25r magnetic anomaly (~57 Ma; Atwater and Severinghaus, 1989). Site 1216 was chosen for drilling because it is near the thickest section of lower Eocene sediments along the 56-Ma transect, which was based upon the seismic stratigraphy of seismic reflection data acquired on site survey cruise EW9709 during transits between the proposed drill sites (Lyle et al., this volume; Moore et al., 2002). The Cenozoic history of sedimentation in this region was poorly constrained prior to Leg 199, being largely based on two Deep Sea Drilling Project (DSDP) drill sites (40 and 41) and piston core data (EW9709-3PC) from ~1.5° in latitude to the south. Based on data from these drill sites, we expected the sedimentary sequence at Site 1216 to comprise red clays (a mixture of wind-blown dust and authigenic precipitates) overlying a biogenic sediment section composed of an upper middle Eocene radiolarian ooze and lower carbonate ooze deposited when the site was near the ridge crest in the late Paleocene and early Eocene. The broad paleoceanographic objectives of drilling the sedimentary sequence anticipated at Site 1216 are as follows: (1) to help define the shift in the Intertropical Convergence Zone through the Paleogene by following the change in eolian-dust composition and flux through time (red clays) and (2) to help define the latitudinal extent, composition, and mass accumulation of plankton communities in the north equatorial Pacific region thereby constraining ocean circulation patterns and the extent of the equatorial high-productivity belt in the Eocene ocean. Results from Site 1216 will also provide important information to test whether there was significant motion of the Hawaiian hotspot with respect to the Earth's spin axis during the early Cenozoic. At 56 Ma, the backtracked location of Site 1216 based upon a hotspot reference frame (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles) is about 9°N, 108°W. If significant hotspot motion or true polar wander occurred since 57 Ma (Petronotis et al., 1994), this drill site could have been much nearer to the equator
    corecore