577 research outputs found

    Playing safe: Assessing the risk of sexual abuse to elite child athletes

    Get PDF
    Young athletes frequently suffer from being seen as athletes first and children second. This has consequences for their legal, civil and human rights as children (Kelly et al., 1995) and for the way in which sport organisations choose to intervene on their behalf to protect them from physical, psychological and sexual abuses (Brackenridge, 1994). Sport careers peak at different ages depending on the sport: in some, children as young as 12 or 13 may reach the highest levels of competitive performance; in others, full maturity as an athlete may come late into adulthood or even middle age. Recognition of this variation has given rise to the concept of ‘sport age’ (Kirby, 1986) referring to sport-specific athlete development. This concept is of significance in helping to identify the developmental process in terms of athletic, rather than chronological, maturity. The risk of sexual abuse in sport, formerly ignored or denied, has now been documented in a number of studies, using both quantitative and qualitative methods (Kirby & Greaves, 1996; Brackenridge, 1997; Volkwein, 1996). Drawing on data from these studies and from the previous work on sport age and athletic maturation, this paper proposes a possible means of identifying and assessing relative risk of sexual abuse to elite young athletes in selected sports. The concept of a ‘stage of imminent achievement’ (SIA) is proposed as the period of peak vulnerability of young athletes to sexual abuse

    Influence of Gap Extrema on the Tunneling Conductance Near an Impurity in an Anisotropic Superconductor

    Full text link
    Changes: figures added in postscript form, Eq. (7) and various typos corrected. We examine the effect of an impurity on the nearby tunneling conductance in an anisotropically-gapped superconductor. The variation of the conductance has pronounced spatial dependence which depends strongly on the Fermi surface location of gap extrema. In particular, different gap symmetries produce profoundly different spatial features in the conductance. These effects may be detectable with an STM measurement on the surface of a high-temperature superconductor.Comment: 12 pages (revtex) + 3 figures (included - postscript), NSF-ITP-93-8

    Prevention of childhood poisoning in the home: overview of systematic reviews and a systematic review of primary studies

    Get PDF
    Unintentional poisoning is a significant child public health problem. This systematic overview of reviews, supplemented with a systematic review of recently published primary studies synthesizes evidence on non-legislative interventions to reduce childhood poisonings in the home with particular reference to interventions that could be implemented by Children's Centres in England or community health or social care services in other high income countries. Thirteen systematic reviews, two meta-analyses and 47 primary studies were identified. The interventions most commonly comprised education, provision of cupboard/drawer locks, and poison control centre (PCC) number stickers. Meta-analyses and primary studies provided evidence that interventions improved poison prevention practices. Twenty eight per cent of studies reporting safe medicine storage (OR from meta-analysis 1.57, 95% CI 1.22–2.02), 23% reporting safe storage of other products (OR from meta-analysis 1.63, 95% CI 1.22–2.17) and 46% reporting availability of PCC numbers (OR from meta-analysis 3.67, 95% CI 1.84–7.33) demonstrated significant effects favouring the intervention group. There was a lack of evidence that interventions reduced poisoning rates. Parents should be provided with poison prevention education, cupboard/drawer locks and emergency contact numbers to use in the event of a poisoning. Further research is required to determine whether improving poison prevention practices reduces poisoning rates

    Pb0.4Bi1.6Sr2Ca1Cu2O8+xPb_{0.4}Bi_{1.6}Sr_{2}Ca_{1}Cu_{2}O_{8+x} and Oxygen Stoichiometry: Structure, Resistivity, Fermi Surface Topology and Normal State Properties

    Full text link
    Pb0.4Bi1.6Sr2CaCu2O8+xPb_{0.4}Bi_{1.6}Sr_2CaCu_2O_{8+x} (Bi(Pb)Bi(Pb)-2212) single crystal samples were studied using transmission electron microscopy (TEM), abab-plane (ρab\rho_{ab}) and cc-axis (ρc\rho_c) resistivity, and high resolution angle-resolved ultraviolet photoemission spectroscopy (ARUPS). TEM reveals that the modulation in the bb-axis for Pb(0.4)Pb(0.4)-doped Bi(Pb)Bi(Pb)-2212 is dominantly of PbPb-type that is not sensitive to the oxygen content of the system, and the system clearly shows a structure of orthorhombic symmetry. Oxygen annealed samples exhibit a much lower cc-axis resistivity and a resistivity minimum at 8013080-130K. He-annealed samples exhibit a much higher cc-axis resistivity and dρc/dT<0d\rho_c/dT<0 behavior below 300K. The Fermi surface (FS) of oxygen annealed Bi(Pb)Bi(Pb)-2212 mapped out by ARUPS has a pocket in the FS around the Mˉ\bar{M} point and exhibits orthorhombic symmetry. There are flat, parallel sections of the FS, about 60\% of the maximum possible along kx=kyk_x = k_y, and about 30\% along kx=kyk_x = - k_y. The wavevectors connecting the flat sections are about 0.72(π,π)0.72(\pi, \pi) along kx=kyk_x = k_y, and about 0.80(π,π)0.80(\pi, \pi) along kx=kyk_x = - k_y, rather than (π,π)(\pi,\pi). The symmetry of the near-Fermi-energy dispersing states in the normal state changes between oxygen-annealed and He-annealed samples.Comment: APS_REVTEX 3.0, 49 pages, including 11 figures, available upon request. Submitted to Phys. Rev. B

    Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage

    Get PDF
    We report a novel technology for the rapid healing of large osseous and chondral defects, based upon the genetic modification of autologous skeletal muscle and fat grafts. These tissues were selected because they not only possess mesenchymal progenitor cells and scaffolding properties, but also can be biopsied, genetically modified and returned to the patient in a single operative session. First generation adenovirus vector carrying cDNA encoding human bone morphogenetic protein-2 (Ad.BMP-2) was used for gene transfer to biopsies of muscle and fat. To assess bone healing, the genetically modified ("gene activated") tissues were implanted into 5mm-long critical size, mid-diaphyseal, stabilized defects in the femora of Fischer rats. Unlike control defects, those receiving gene-activated muscle underwent rapid healing, with evidence of radiologic bridging as early as 10 days after implantation and restoration of full mechanical strength by 8 weeks. Histologic analysis suggests that the grafts rapidly differentiated into cartilage, followed by efficient endochondral ossification. Fluorescence in situ hybridization detection of Y-chromosomes following the transfer of male donor muscle into female rats demonstrated that at least some of the osteoblasts of the healed bone were derived from donor muscle. Gene activated fat also healed critical sized defects, but less quickly than muscle and with more variability. Anti-adenovirus antibodies were not detected. Pilot studies in a rabbit osteochondral defect model demonstrated the promise of this technology for healing cartilage defects. Further development of these methods should provide ways to heal bone and cartilage more expeditiously, and at lower cost, than is presently possible

    DNA Damage Mediated S and G2 Checkpoints in Human Embryonal Carcinoma Cells

    Get PDF
    For mouse embryonic stem (ES) cells, the importance of the S and G2 cell cycle checkpoints for genomic integrity is increased by the absence of the G1 checkpoint. We have investigated ionizing radiation (IR)-mediated cell cycle checkpoints in undifferentiated and retinoic acid-differentiated human embryonal carcinoma (EC) cells. Like mouse ES cells, human EC cells did not undergo G1 arrest after IR but displayed a prominent S-phase delay followed by a G2-phase delay. In contrast, although differentiated EC cells also failed to arrest at G1-phase after IR, they quickly exited S-phase and arrested in G2-phase. In differentiated EC cells, the G2-M-phase cyclin B1/CDC2 complex was upregulated after IR, but the G1-S-phase cyclin E and the cyclin E/CDK2 complex were expressed at constitutively low levels, which could be an important factor distinguishing DNA damage responses between undifferentiated and differentiated EC cells. S-phase arrest and expression of p21 could be inhibited by 7-hydroxystaurosporine, suggesting that the ataxia-telangiectasia and Rad-3-related-checkpoint kinase 1 (ATR-CHK1), and p21 pathways might play a role in the IR-mediated S-phase checkpoint in EC cells. IR-mediated phosphorylation of ataxia-telangiectasia mutated, (CHK1), and checkpoint kinase 2 were distinctly higher in undifferentiated EC cells compared with differentiated EC cells. Combined with the prominent S and G2 checkpoints and a more efficient DNA damage repair system, these mechanisms operate together in the maintenance of genome stability for EC cells. Stem Cells 2009;27:568–57

    Dispersion of Ordered Stripe Phases in the Cuprates

    Full text link
    A phase separation model is presented for the stripe phase of the cuprates, which allows the doping dependence of the photoemission spectra to be calculated. The idealized limit of a well-ordered array of magnetic and charged stripes is analyzed, including effects of long-range Coulomb repulsion. Remarkably, down to the limit of two-cell wide stripes, the dispersion can be interpreted as essentially a superposition of the two end-phase dispersions, with superposed minigaps associated with the lattice periodicity. The largest minigap falls near the Fermi level; it can be enhanced by proximity to a (bulk) Van Hove singularity. The calculated spectra are dominated by two features -- this charge stripe minigap plus the magnetic stripe Hubbard gap. There is a strong correlation between these two features and the experimental photoemission results of a two-peak dispersion in La2x_{2-x}Srx_xCuO4_4, and the peak-dip-hump spectra in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. The differences are suggestive of the role of increasing stripe fluctuations. The 1/8 anomaly is associated with a quantum critical point, here expressed as a percolation-like crossover. A model is proposed for the limiting minority magnetic phase as an isolated two-leg ladder.Comment: 24 pages, 26 PS figure

    Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2

    Get PDF
    The hadronic structure function of the photon F_2^gamma is measured as a function of Bjorken x and of the factorisation scale Q^2 using data taken by the OPAL detector at LEP. Previous OPAL measurements of the x dependence of F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted by QCD, the data show positive scaling violations in F_2^gamma. Several parameterisations of F_2^gamma are in agreement with the measurements whereas the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001, Ascona, Switzerlan

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays

    Full text link
    The lifetime and oscillation frequency of the B0 meson has been measured using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d = 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.
    corecore