18 research outputs found

    The role of O-GlcNAcylation in immunity against infections

    No full text
    Mounting an effective immune response is crucial for the host to protect itself against invading pathogens. It is now well appreciated that reprogramming of core metabolic pathways in immune cells is a key requirement for their activation and function during infections. The role of several ancillary metabolic pathways in shaping immune cell function is less well understood. One such pathway, for which interest has recently been growing, is the hexosamine biosynthesis pathway (HBP) that generates uridine diphosphateN-acetylglucosamine (UDP-GlcNAc), the donor substrate for a specific form of glycosylation termed O-GlcNAcylation. O-GlcNAc is an intracellular post-translational modification that alters the functional properties of the modified proteins, in particular transcription factors and epigenetic regulators. An increasing number of studies suggest a central role for the HBP and O-GlcNAcylation in dictating immune cell function, including the response to different pathogens. We here discuss the most recent insights regarding O-GlcNAcylation and immunity, and explore whether targeting of O-GlcNAcylation could hold promise as a therapeutic approach to modulate immune responses to infections.Host-parasite interactio

    The role of O-GlcNAcylation in immunity against infections

    No full text
    Mounting an effective immune response is crucial for the host to protect itself against invading pathogens. It is now well appreciated that reprogramming of core metabolic pathways in immune cells is a key requirement for their activation and function during infections. The role of several ancillary metabolic pathways in shaping immune cell function is less well understood. One such pathway, for which interest has recently been growing, is the hexosamine biosynthesis pathway (HBP) that generates uridine diphosphateN-acetylglucosamine (UDP-GlcNAc), the donor substrate for a specific form of glycosylation termed O-GlcNAcylation. O-GlcNAc is an intracellular post-translational modification that alters the functional properties of the modified proteins, in particular transcription factors and epigenetic regulators. An increasing number of studies suggest a central role for the HBP and O-GlcNAcylation in dictating immune cell function, including the response to different pathogens. We here discuss the most recent insights regarding O-GlcNAcylation and immunity, and explore whether targeting of O-GlcNAcylation could hold promise as a therapeutic approach to modulate immune responses to infections

    Helminths and dendritic cells: Sensing and regulating via pattern recognition receptors, Th2 and Treg responses

    No full text
    The classical reaction of the host to helminth infections is the induction of Th2 immune responses with a regulatory component. DC, as central players in the induction and maintenance of immune responses, play a prominent role in both these processes, and in recent years considerable progress has been made in elucidating the mechanisms behind the interplay between DC and helminths. It is becoming increasingly clear that helminths modulate DC function not only via direct interactions but also indirectly via host-derived cues. Furthermore, while studies have until recently focused on receptor signaling-mediated DC modulation by helminths, evidence is emerging that DC may also respond to helminth infections by sensing stress signals or tissue damage inflicted by the worms or their products. Here, we will discuss these new insights and will link them to the origin and importance of Th2 and regulatory immune responses with respect to the survival of both parasite and host.Host-parasite interactio
    corecore