847 research outputs found

    New Results on Standard Solar Models

    Full text link
    We describe the current status of solar modelling and focus on the problems originated with the introduction of solar abundance determinations with low CNO abundance values. We use models computed with solar abundance compilations obtained during the last decade, including the newest published abundances by Asplund and collaborators. Results presented here make focus both on helioseismic properties and the models as well as in the neutrino fluxes predictions. We also discuss changes in radiative opacities to restore agreement between helioseismology, solar models, and solar abundances and show the effect of such modifications on solar neutrino fluxes.Comment: 9 pages. Review talk presented at "Synergies between solar and stellar modelling", Rome, June 2009. To be published by Astrophysics and Space Scienc

    Forward-Backward Correlations and Event Shapes as probes of Minimum-Bias Event Properties

    Full text link
    Measurements of inclusive observables, such as particle multiplicities and momentum spectra, have already delivered important information on soft-inclusive ("minimum-bias") physics at the Large Hadron Collider. In order to gain a more complete understanding, however, it is necessary to include also observables that probe the structure of the studied events. We argue that forward-backward (FB) correlations and event-shape observables may be particulary useful first steps in this respect. We study the sensitivity of several different types of FB correlations and two event shape variables - transverse thrust and transverse thrust minor - to various sources of theoretical uncertainty: multiple parton interactions, parton showers, colour (re)connections, and hadronization. The power of each observable to furnish constraints on Monte Carlo models is illustrated by including comparisons between several recent, and qualitatively different, PYTHIA 6 tunes, for pp collisions at sqrt(s) = 900 GeV.Comment: 13 page

    Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Hot Flat Space and Gaussian Approximation in the Optical Schwarzschild Metric

    Get PDF
    Continuing our investigation of the regularization of the noise kernel in curved spacetimes [N. G. Phillips and B. L. Hu, Phys. Rev. D {\bf 63}, 104001 (2001)] we adopt the modified point separation scheme for the class of optical spacetimes using the Gaussian approximation for the Green functions a la Bekenstein-Parker-Page. In the first example we derive the regularized noise kernel for a thermal field in flat space. It is useful for black hole nucleation considerations. In the second example of an optical Schwarzschild spacetime we obtain a finite expression for the noise kernel at the horizon and recover the hot flat space result at infinity. Knowledge of the noise kernel is essential for studying issues related to black hole horizon fluctuations and Hawking radiation backreaction. We show that the Gaussian approximated Green function which works surprisingly well for the stress tensor at the Schwarzschild horizon produces significant error in the noise kernel there. We identify the failure as occurring at the fourth covariant derivative order.Comment: 21 pages, RevTeX

    Centrality dependence of charged-particle pseudorapidity distributions from d+Au collisions at sqrt(s_{NN})=200 GeV

    Full text link
    Charged-particle pseudorapidity densities are presented for the d+Au reaction at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and 60-80% centrality classes. Models incorporating both soft physics and hard, perturbative QCD-based scattering physics agree well with the experimental results. The data do not support predictions based on strong-coupling, semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4 GeV.Comment: 4 pages, 3figures; expanded discussion of uncertainties; added 60-80% centrality range; added additional discussion on centrality selection bia

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Scanning the phases of QCD with BRAHMS

    Full text link
    BRAHMS has the ability to study relativistic heavy ion collisions from the final freeze-out of hadrons all the way back to the initial wave-function of the gold nuclei. This is accomplished by studying hadrons with a very wide range of momenta and angles. In doing so we can scan various phases of QCD, from a hadron gas, to a quark gluon plasma and perhaps to a color glass condensate.Comment: 8 pages, 6 figures, proceedings of plenary talk at Quark Matter 2004 conferenc

    High Pt Hadron Spectra at High Rapidity

    Full text link
    We report the measurement of charged hadron production at different pseudo-rapidity values in deuteron+gold as well as proton+proton collisions at sqrtsNNsqrt{s_{NN}} = 200GeV at RHIC. The nuclear modification factors RdAuR_{dAu} and RcpR_{cp} are used to investigate new behaviors in the deuteron+gold system as function of rapidity and the centrality of the collisions respectively.Comment: Nine pages 4 figures to be published in the QM2004 Proceedings, typos corrected and one reference adde

    Charged particle densities from Au+Au collisions at sqrt{s_{NN}}=130 GeV

    Full text link
    We present charged particle densities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at sqrt{s_{NN}}=130 GeV. An integral charged particle multiplicity of 3860+/-300 is found for the 5% most central events within the pseudorapidity range -4.7 <= eta <= 4.7. At mid-rapidity an enhancement in the particle yields per participant nucleon pair is observed for central events. Near to the beam rapidity, a scaling of the particle yields consistent with the ``limiting fragmentation'' picture is observed. Our results are compared to other recent experimental and theoretical discussions of charged particle densities in ultra-relativistic heavy-ion collisions.Comment: 14 pages, 4 figures; to be published in Phys. Lett.

    The New Physics at RHIC. From Transparency to High pt_t Suppression

    Full text link
    Heavy ion collisions at RHIC energies (Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV) exhibit significant new features as compared to earlier experiments at lower energies. The reaction is characterized by a high degree of transparency of the collisions partners leading to the formation of a baryon-poor central region. In this zone, particle production occurs mainly from the stretching of the color field. The initial energy density is well above the one considered necessary for the formation of the Quark Gluon Plasma, QGP. The production of charged particles of various masses is consistent with chemical and thermal equilibrium. Recently, a suppression of the high transverse momentum component of hadron spectra has been observed in central Au+Au collisions. This can be explained by the energy loss experienced by leading partons in a medium with a high density of unscreened color charges. In contrast, such high ptp_t jets are not suppressed in d+Au collisions suggesting that the high ptp_t suppression is not due to initial state effects in the ultrarelativistic colliding nuclei.Comment: 15 pages, 11 figures. to appear in Nucl. Physics A. Invited talk at 'Nucleus-Nucleus Collisions 2003' conference, Mosco

    Seasonality and the persistence and invasion of measles

    Get PDF
    The critical community size (CCS) for measles, which separates persistent from extinction-prone populations, is arguably the best understood stochastic threshold in ecology. Using simple models, we explore a relatively neglected relationship of how the CCS scales with birth rate. A predominantly positive relationship of persistence with birth rate is complicated by the accompanying dynamical transitions of the underlying deterministic process. We show that these transitions imply a lower CCS for high birth rate less developed countries and contrary to the experience in lower birth rate, industrial countries, the CCS may increase after vaccination. We also consider the evolutionary implications of the CCS for the origin of measles; this analysis explores how the deterministic and stochastic thresholds for invasion and persistence set limits on the mechanism by which this highly infectious pathogen could have successfully colonized its human host
    corecore