927 research outputs found
A Deformation of Twistor Space and a Chiral Mass Term in N=4 Super Yang-Mills Theory
Super twistor space admits a certain (super) complex structure deformation
that preserves the Poincare subgroup of the symmetry group PSL(4|4) and depends
on 10 parameters. In a previous paper [hep-th/0502076], it was proposed that in
twistor string theory this deformation corresponds to augmenting N=4 super
Yang-Mills theory by a mass term for the left-chirality spinors. In this paper
we analyze this proposal in more detail. We calculate 4-particle scattering
amplitudes of fermions, gluons and scalars and show that they are supported on
holomorphic curves in the deformed twistor space.Comment: 52 pages, 15 figure
Correlated Errors in Quantum Error Corrections
We show that errors are not generated correlatedly provided that quantum bits
do not directly interact with (or couple to) each other. Generally, this
no-qubits-interaction condition is assumed except for the case where two-qubit
gate operation is being performed. In particular, the no-qubits-interaction
condition is satisfied in the collective decoherence models. Thus, errors are
not correlated in the collective decoherence. Consequently, we can say that
current quantum error correcting codes which correct single-qubit-errors will
work in most cases including the collective decoherence.Comment: no correction, 3 pages, RevTe
Inhomogeneously doped two-leg ladder systems
A chemical potential difference between the legs of a two-leg ladder is found
to be harmful for Cooper pairing. The instability of superconductivity in such
systems is analyzed by compairing results of various analytical and numerical
methods. Within a strong coupling approach for the t-J model, supplemented by
exact numerical diagonalization, hole binding is found unstable beyond a
finite, critical chemical potential difference. The spinon-holon mean field
theory for the t-J model shows a clear reduction of the the BCS gaps upon
increasing the chemical potential difference leading to a breakdown of
superconductivity. Based on a renormalization group approach and Abelian
bosonization, the doping dependent phase diagram for the weakly interacting
Hubbard model with different chemical potentials was determined.Comment: Revtex4, 11 pages, 7 figure
On Nonperturbative Exactness of Konishi Anomaly and the Dijkgraaf-Vafa Conjecture
In this paper we study the nonperturbative corrections to the generalized
Konishi anomaly that come from the strong coupling dynamics of the gauge
theory. We consider U(N) gauge theory with adjoint and Sp(N) or SO(N) gauge
theory with symmetric or antisymmetric tensor. We study the algebra of chiral
rotations of the matter field and show that it does not receive nonperturbative
corrections. The algebra implies Wess-Zumino consistency conditions for the
generalized Konishi anomaly which are used to show that the anomaly does not
receive nonperturbative corrections for superpotentials of degree less than
2l+1 where 2l=3c(Adj)-c(R) is the one-loop beta function coefficient. The
superpotentials of higher degree can be nonperturbatively renormalized because
of the ambiguities in the UV completion of the gauge theory. We discuss the
implications for the Dijkgraaf-Vafa conjecture.Comment: 23 page
The Topological B-model on a Mini-Supertwistor Space and Supersymmetric Bogomolny Monopole Equations
In the recent paper hep-th/0502076, it was argued that the open topological
B-model whose target space is a complex (2|4)-dimensional mini-supertwistor
space with D3- and D1-branes added corresponds to a super Yang-Mills theory in
three dimensions. Without the D1-branes, this topological B-model is equivalent
to a dimensionally reduced holomorphic Chern-Simons theory. Identifying the
latter with a holomorphic BF-type theory, we describe a twistor correspondence
between this theory and a supersymmetric Bogomolny model on R^3. The connecting
link in this correspondence is a partially holomorphic Chern-Simons theory on a
Cauchy-Riemann supermanifold which is a real one-dimensional fibration over the
mini-supertwistor space. Along the way of proving this twistor correspondence,
we review the necessary basic geometric notions and construct action
functionals for the involved theories. Furthermore, we discuss the geometric
aspect of a recently proposed deformation of the mini-supertwistor space, which
gives rise to mass terms in the supersymmetric Bogomolny equations. Eventually,
we present solution generating techniques based on the developed twistorial
description together with some examples and comment briefly on a twistor
correspondence for super Yang-Mills theory in three dimensions.Comment: 55 pages; v2: typos fixed, published versio
Electromagnetic Response of Layered Superconductors with Broken Lattice Inversion Symmetry
We investigate the macroscopic effects of charge density waves (CDW) and
superconductivity in layered superconducting systems with broken lattice
inversion symmetry (allowing for piezoelectricity) such as two dimensional (2D)
transition metal dichalcogenides (TMD). We work with the low temperature time
dependent Ginzburg-Landau theory and study the coupling of lattice distortions
and low energy CDW collective modes to the superconducting order parameter in
the presence of electromagnetic fields. We show that superconductivity and
piezoelectricity can coexist in these singular metals. Furthermore, our study
indicates the nature of the quantum phase transition between a commensurate CDW
phase and the stripe phase that has been observed as a function of applied
pressure.Comment: 9 pages, 1 figure. Final version. Accepted in Phys.Rev.
Effective superpotential for U(N) with antisymmetric matter
We consider an N=1 U(N) gauge theory with matter in the antisymmetric
representation and its conjugate, with a tree level superpotential containing
at least quartic interactions for these fields. We obtain the effective
glueball superpotential in the classically unbroken case, and show that it has
a non-trivial N-dependence which does not factorize. We also recover additional
contributions starting at order S^N from the dynamics of Sp(0) factors. This
can also be understood by a precise map of this theory to an Sp(2N-2) gauge
theory with antisymmetric matter.Comment: 22 pages. v2: comment (and a reference) added at the end of section 2
on low rank cases; minor typos corrected. v3: 2 footnotes added with
additional clarifications; version to appear in journa
Marginal deformation of N=4 SYM and Penrose limits with continuum spectrum
We study the Penrose limit about a null geodesic with 3 equal angular momenta
in the recently obtained type IIB solution dual to an exactly marginal
-deformation of N=4 SYM. The resulting background has non-trivial NS
3-form flux as well as RR 5- and 3-form fluxes. We quantise the light-cone
Green-Schwarz action and show that it exhibits a continuum spectrum. We show
that this is related to the dynamics of a charged particle moving in a Landau
plane with an extra interaction induced by the deformation. We interpret the
results in the dual N=1 SCFT.Comment: 26 pages, 2 figures; v2: typos corrected, field theory interpretation
extende
Quantum error correction for continuously detected errors
We show that quantum feedback control can be used as a quantum error
correction process for errors induced by weak continuous measurement. In
particular, when the error model is restricted to one, perfectly measured,
error channel per physical qubit, quantum feedback can act to perfectly protect
a stabilizer codespace. Using the stabilizer formalism we derive an explicit
scheme, involving feedback and an additional constant Hamiltonian, to protect
an ()-qubit logical state encoded in physical qubits. This works for
both Poisson (jump) and white-noise (diffusion) measurement processes. In
addition, universal quantum computation is possible in this scheme. As an
example, we show that detected-spontaneous emission error correction with a
driving Hamiltonian can greatly reduce the amount of redundancy required to
protect a state from that which has been previously postulated [e.g., Alber
\emph{et al.}, Phys. Rev. Lett. 86, 4402 (2001)].Comment: 11 pages, 1 figure; minor correction
Lepton Flavour Violation in a Class of Lopsided SO(10) Models
A class of predictive SO(10) grand unified theories with highly asymmetric
mass matrices, known as lopsided textures, has been developed to accommodate
the observed mixing in the neutrino sector. The model class effectively
determines the rate for charged lepton flavour violation, and in particular the
branching ratio for , assuming that the supersymmetric GUT
breaks directly to the constrained minimal supersymmetric standard model
(CMSSM). We find that in light of the combined constraints on the CMSSM
parameters from direct searches and from the WMAP satellite observations, the
resulting predicted rate for in this model class can be
within the current experimental bounds for low , but that the next
generation of experiments would effectively rule out this
model class if LFV is not detected.Comment: 23 page
- …
