10 research outputs found

    PERTINENT - PERindopril-Thrombosis, InflammatioN, endothelial dysfunction and neurohormonal activation trial: A sub-study of the EUROPA study

    No full text
    BACKGROUND: Markers of thrombosis, inflammation, endothelial dysfunction and neurohumoral activation such as fibrinogen, D-dimer, C-reactive protein, von Willebrand factor, tumour necrosis factor-alpha and chromogranin-A are reported to be linked to the increase of cardiovascular risk for atherosclerosis progression and events in patients with cardiovascular diseases. METHODS: EUROPA is a double blind, placebo-controlled trial on 12,231 patients that evaluates the effect of an angiotensin converting enzyme inhibitor--perindopril--on prevention of cardiovascular events in patients with coronary artery disease. PERTINENT is a sub-study of EUROPA that evaluates (a) in Part A (300 patients): the influence of perindopril vs. placebo on fibrinogen, D-dimer, C-reactive protein, von Willebrand factor, tumour necrosis factor-alpha and chromogranin-A. In addition, NOS expression and induction of apoptosis on human umbilical vein endothelial cells and angiotensin converting enzyme levels are also studied; (b) in Part B (about 1200 patients): the predictive role of plasma levels of C-reactive protein and von Willebrand factor on the occurrence of cardiovascular events. To this end, matched case-control analyses are planned (patients with vs. patients without events). STATUS OF PERTINENT: Blood analyses are in progress in four specialised laboratories: (a) Gaubius Laboratory, Leiden, TNO-PG, The Netherlands; (b) University Department of Medicine, Birmingham, UK; (c) University of Pavia, Italy; (d) Fondazione Salvatore Maugeri, Cardiovascular Research Centre, Gussago, Italy. CONCLUSIONS: The PERTINENT sub-study might help elucidating the phenomena contributing to the pathophysiology of cardiovascular events in patients with coronary artery disease and the role of perindopril in such context

    The Early Data Release of the Dark Energy Spectroscopic Instrument

    No full text
    International audienceThe Dark Energy Spectroscopic Instrument (DESI) completed its five-month Survey Validation in May 2021. Spectra of stellar and extragalactic targets from Survey Validation constitute the first major data sample from the DESI survey. This paper describes the public release of those spectra, the catalogs of derived properties, and the intermediate data products. In total, the public release includes good-quality spectral information from 466,447 objects targeted as part of the Milky Way Survey, 428,758 as part of the Bright Galaxy Survey, 227,318 as part of the Luminous Red Galaxy sample, 437,664 as part of the Emission Line Galaxy sample, and 76,079 as part of the Quasar sample. In addition, the release includes spectral information from 137,148 objects that expand the scope beyond the primary samples as part of a series of secondary programs. Here, we describe the spectral data, data quality, data products, Large-Scale Structure science catalogs, access to the data, and references that provide relevant background to using these spectra

    The Early Data Release of the Dark Energy Spectroscopic Instrument

    No full text
    International audienceThe Dark Energy Spectroscopic Instrument (DESI) completed its five-month Survey Validation in May 2021. Spectra of stellar and extragalactic targets from Survey Validation constitute the first major data sample from the DESI survey. This paper describes the public release of those spectra, the catalogs of derived properties, and the intermediate data products. In total, the public release includes good-quality spectral information from 466,447 objects targeted as part of the Milky Way Survey, 428,758 as part of the Bright Galaxy Survey, 227,318 as part of the Luminous Red Galaxy sample, 437,664 as part of the Emission Line Galaxy sample, and 76,079 as part of the Quasar sample. In addition, the release includes spectral information from 137,148 objects that expand the scope beyond the primary samples as part of a series of secondary programs. Here, we describe the spectral data, data quality, data products, Large-Scale Structure science catalogs, access to the data, and references that provide relevant background to using these spectra

    The Early Data Release of the Dark Energy Spectroscopic Instrument

    No full text
    International audienceThe Dark Energy Spectroscopic Instrument (DESI) completed its five-month Survey Validation in May 2021. Spectra of stellar and extragalactic targets from Survey Validation constitute the first major data sample from the DESI survey. This paper describes the public release of those spectra, the catalogs of derived properties, and the intermediate data products. In total, the public release includes good-quality spectral information from 466,447 objects targeted as part of the Milky Way Survey, 428,758 as part of the Bright Galaxy Survey, 227,318 as part of the Luminous Red Galaxy sample, 437,664 as part of the Emission Line Galaxy sample, and 76,079 as part of the Quasar sample. In addition, the release includes spectral information from 137,148 objects that expand the scope beyond the primary samples as part of a series of secondary programs. Here, we describe the spectral data, data quality, data products, Large-Scale Structure science catalogs, access to the data, and references that provide relevant background to using these spectra

    The Early Data Release of the Dark Energy Spectroscopic Instrument

    No full text
    International audienceThe Dark Energy Spectroscopic Instrument (DESI) completed its five-month Survey Validation in May 2021. Spectra of stellar and extragalactic targets from Survey Validation constitute the first major data sample from the DESI survey. This paper describes the public release of those spectra, the catalogs of derived properties, and the intermediate data products. In total, the public release includes good-quality spectral information from 466,447 objects targeted as part of the Milky Way Survey, 428,758 as part of the Bright Galaxy Survey, 227,318 as part of the Luminous Red Galaxy sample, 437,664 as part of the Emission Line Galaxy sample, and 76,079 as part of the Quasar sample. In addition, the release includes spectral information from 137,148 objects that expand the scope beyond the primary samples as part of a series of secondary programs. Here, we describe the spectral data, data quality, data products, Large-Scale Structure science catalogs, access to the data, and references that provide relevant background to using these spectra

    Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument

    No full text
    International audienceThe Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a survey covering 14,000 deg2^2 over five years to constrain the cosmic expansion history through precise measurements of Baryon Acoustic Oscillations (BAO). The scientific program for DESI was evaluated during a five month Survey Validation (SV) campaign before beginning full operations. This program produced deep spectra of tens of thousands of objects from each of the stellar (MWS), bright galaxy (BGS), luminous red galaxy (LRG), emission line galaxy (ELG), and quasar target classes. These SV spectra were used to optimize redshift distributions, characterize exposure times, determine calibration procedures, and assess observational overheads for the five-year program. In this paper, we present the final target selection algorithms, redshift distributions, and projected cosmology constraints resulting from those studies. We also present a `One-Percent survey' conducted at the conclusion of Survey Validation covering 140 deg2^2 using the final target selection algorithms with exposures of a depth typical of the main survey. The Survey Validation indicates that DESI will be able to complete the full 14,000 deg2^2 program with spectroscopically-confirmed targets from the MWS, BGS, LRG, ELG, and quasar programs with total sample sizes of 7.2, 13.8, 7.46, 15.7, and 2.87 million, respectively. These samples will allow exploration of the Milky Way halo, clustering on all scales, and BAO measurements with a statistical precision of 0.28% over the redshift interval z<1.1z<1.1, 0.39% over the redshift interval 1.1<z<1.91.1<z<1.9, and 0.46% over the redshift interval 1.9<z<3.51.9<z<3.5

    Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument

    No full text
    International audienceThe Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a survey covering 14,000 deg2^2 over five years to constrain the cosmic expansion history through precise measurements of Baryon Acoustic Oscillations (BAO). The scientific program for DESI was evaluated during a five month Survey Validation (SV) campaign before beginning full operations. This program produced deep spectra of tens of thousands of objects from each of the stellar (MWS), bright galaxy (BGS), luminous red galaxy (LRG), emission line galaxy (ELG), and quasar target classes. These SV spectra were used to optimize redshift distributions, characterize exposure times, determine calibration procedures, and assess observational overheads for the five-year program. In this paper, we present the final target selection algorithms, redshift distributions, and projected cosmology constraints resulting from those studies. We also present a `One-Percent survey' conducted at the conclusion of Survey Validation covering 140 deg2^2 using the final target selection algorithms with exposures of a depth typical of the main survey. The Survey Validation indicates that DESI will be able to complete the full 14,000 deg2^2 program with spectroscopically-confirmed targets from the MWS, BGS, LRG, ELG, and quasar programs with total sample sizes of 7.2, 13.8, 7.46, 15.7, and 2.87 million, respectively. These samples will allow exploration of the Milky Way halo, clustering on all scales, and BAO measurements with a statistical precision of 0.28% over the redshift interval z<1.1z<1.1, 0.39% over the redshift interval 1.1<z<1.91.1<z<1.9, and 0.46% over the redshift interval 1.9<z<3.51.9<z<3.5

    Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument

    No full text
    International audienceThe Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a survey covering 14,000 deg2^2 over five years to constrain the cosmic expansion history through precise measurements of Baryon Acoustic Oscillations (BAO). The scientific program for DESI was evaluated during a five month Survey Validation (SV) campaign before beginning full operations. This program produced deep spectra of tens of thousands of objects from each of the stellar (MWS), bright galaxy (BGS), luminous red galaxy (LRG), emission line galaxy (ELG), and quasar target classes. These SV spectra were used to optimize redshift distributions, characterize exposure times, determine calibration procedures, and assess observational overheads for the five-year program. In this paper, we present the final target selection algorithms, redshift distributions, and projected cosmology constraints resulting from those studies. We also present a `One-Percent survey' conducted at the conclusion of Survey Validation covering 140 deg2^2 using the final target selection algorithms with exposures of a depth typical of the main survey. The Survey Validation indicates that DESI will be able to complete the full 14,000 deg2^2 program with spectroscopically-confirmed targets from the MWS, BGS, LRG, ELG, and quasar programs with total sample sizes of 7.2, 13.8, 7.46, 15.7, and 2.87 million, respectively. These samples will allow exploration of the Milky Way halo, clustering on all scales, and BAO measurements with a statistical precision of 0.28% over the redshift interval z<1.1z<1.1, 0.39% over the redshift interval 1.1<z<1.91.1<z<1.9, and 0.46% over the redshift interval 1.9<z<3.51.9<z<3.5

    Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study)

    No full text
    BACKGROUND: Treatment with angiotensin-converting-enzyme (ACE) inhibitors reduces the rate of cardiovascular events among patients with left-ventricular dysfunction and those at high risk of such events. We assessed whether the ACE inhibitor perindopril reduced cardiovascular risk in a low-risk population with stable coronary heart disease and no apparent heart failure. METHODS: We recruited patients from October, 1997, to June, 2000. 13655 patients were registered with previous myocardial infarction (64%), angiographic evidence of coronary artery disease (61%), coronary revascularisation (55%), or a positive stress test only (5%). After a run-in period of 4 weeks, in which all patients received perindopril, 12218 patients were randomly assigned perindopril 8 mg once daily (n=6110), or matching placebo (n=6108). The mean follow-up was 4.2 years, and the primary endpoint was cardiovascular death, myocardial infarction, or cardiac arrest. Analysis was by intention to treat. FINDINGS: Mean age of patients was 60 years (SD 9), 85% were male, 92% were taking platelet inhibitors, 62% beta blockers, and 58% lipid-lowering therapy. 603 (10%) placebo and 488 (8%) perindopril patients experienced the primary endpoint, which yields a 20% relative risk reduction (95% CI 9-29, p=0.0003) with perindopril. These benefits were consistent in all predefined subgroups and secondary endpoints. Perindopril was well tolerated. INTERPRETATION: Among patients with stable coronary heart disease without apparent heart failure, perindopril can significantly improve outcome. About 50 patients need to be treated for a period of 4 years to prevent one major cardiovascular event. Treatment with perindopril, on top of other preventive medications, should be considered in all patients with coronary heart disease
    corecore