327 research outputs found

    General Static Solutions of 2-dimensional Einstein-Dilaton-Maxwell-Scalar Theories

    Get PDF
    General static solutions of effectively 2-dimensional Einstein-Dilaton-Maxwell-Scalar theories are obtained. Our model action includes a class of 2-d dilaton gravity theories coupled with a U(1)U(1) gauge field and a massless scalar field. Therefore it also describes the spherically symmetric reduction of dd-dimensional Einstein-Scalar-Maxwell theories. The properties of the analytic solutions are briefly discussed.Comment: 16 pages, Latex fil

    A Quantum Bousso Bound

    Get PDF
    The Bousso bound requires that one quarter the area of a closed codimension two spacelike surface exceeds the entropy flux across a certain lightsheet terminating on the surface. The bound can be violated by quantum effects such as Hawking radiation. It is proposed that at the quantum level the bound be modified by adding to the area the quantum entanglement entropy across the surface. The validity of this quantum Bousso bound is proven in a two-dimensional large N dilaton gravity theory.Comment: 17 page

    Joint modelling of multi-scale animal movement data using hierarchical hidden Markov models

    Get PDF
    1.Hidden Markov models are prevalent in animal movement modelling, where they are widely used to infer behavioural modes and their drivers from various types of telemetry data. To allow for meaningful inference, observations need to be equally spaced in time, or otherwise regularly sampled, where the corresponding temporal resolution strongly affects what kind of behaviours can be inferred from the data. 2.Recent advances in biologging technology have led to a variety of novel telemetry sensors which often collect data from the same individual simultaneously at different time scales, e.g. step lengths obtained from GPS tags every hour, dive depths obtained from time‐depth recorders once per dive, or accelerations obtained from accelerometers several times per second. However, to date, statistical machinery to address the corresponding complex multi‐stream and multi‐scale data is lacking. 3.We propose hierarchical hidden Markov models as a versatile statistical framework that naturally accounts for differing temporal resolutions across multiple variables. In these models, the observations are regarded as stemming from multiple, connected behavioural processes, each of which operates at the time scale at which the corresponding variables were observed. 4.By jointly modelling multiple data streams, collected at different temporal resolutions, corresponding models can be used to infer behavioural modes at multiple time scales, and in particular help to draw a much more comprehensive picture of an animal's movement patterns, e.g. with regard to long‐term vs. short‐term movement strategies. 5.The suggested approach is illustrated in two real‐data applications, where we jointly model i) coarse‐scale horizontal and fine‐scale vertical Atlantic cod (Gadus morhua) movements throughout the English Channel, and ii) coarse‐scale horizontal movements and corresponding fine‐scale accelerations of a horn shark (Heterodontus francisci) tagged off the Californian coast

    Evaporation of a two-dimensional charged black hole

    Get PDF
    We construct a dilatonic two-dimensional model of a charged black hole. The classical solution is a static charged black hole, characterized by two parameters, mm and qq, representing the black hole's mass and charge. Then we study the semiclassical effects, and calculate the evaporation rate of both mm and qq, as a function of these two quantities. Analyzing this dynamical system, we find two qualitatively different regimes, depending on the electromagnetic coupling constant gAg_{A}. If the latter is greater than a certain critical value, the charge-to-mass ratio decays to zero upon evaporation. On the other hand, for gAg_{A} smaller than the critical value, the charge-to-mass ratio approaches a non-zero constant that depends on gAg_{A} but not on the initial values of mm and qq.Comment: Latex, 30 pages, accepted for publication in Phys. Rev.

    Particle dynamics in a class of 2-dimensional gravity theories

    Full text link
    We provide a method to determine the motion of a classical massive particle in a background geometry of 2-dimensional gravity theories, for which the Birkhoff theorem holds. In particular, we get the particle trajectory in a continuous class of 2-dimensional dilaton gravity theories that includes the Callan-Giddings-Harvey-Strominger (CGHS) model, the Jackiw-Teitelboim (JT) model, and the dd-dimensional ss-wave Einstein gravity. The explicit trajectory expressions for these theories are given along with the discussions on the results.Comment: 15 pages, LaTeX. The deletion of the repeated portion of the abstract and the proper line wrapping of the tex file. No other change

    Consequence of Hawking radiation from 2d dilaton black holes

    Get PDF
    We investigate the CGHS model through numerical calculation. The behavior of the mass function, which we introduced in our previous work as a ``local mass'', is examined. We found that the mass function takes negative values, which means that the amount of Hawking radiation becomes greater than the initial mass of the black hole as in the case of the RST model.Comment: 17pages, 5 figures (three of them are attached, the other 2 figures are available on request. Some mistakes including typographic errors have been correcte

    Exact Four-Dimensional Dyonic Black Holes and Bertotti-Robinson Spacetimes in String Theory

    Full text link
    Conformal field theories corresponding to two-dimensional electrically charged black holes and to two-dimensional anti-de Sitter space with a covariantly constant electric field are simply constructed as SL(2,R)/ZSL(2,R)/Z WZW coset models. The two-dimensional electrically charged black holes are related by Kaluza-Klein reduction to the 2+1-dimensional rotating black hole of Banados, Teitelboim and Zanelli, and our construction is correspondingly related to its realization as a WZW model. Four-dimensional spacetime solutions are obtained by tensoring these two-dimensional theories with SU(2)/Z(m)SU(2)/Z(m) coset models. These describe a family of dyonic black holes and the Bertotti--Robinson universe.Comment: 10 pages, harvmac, (Reference to Kaloper added.

    The Stress-Energy Tensor in Soluble Models of Spherically Symmetric Charged Black Hole Evaporation

    Get PDF
    We study the decay of a near-extremal black hole in AdS2_2, related to the near-horizon region of 3+1-dimensional Reissner-Nordstr\"om spacetime, following Fabbri, Navarro, and Navarro-Salas. Back-reaction is included in a semiclassical approximation. Calculations of the stress-energy tensor of matter coupled to the physical spacetime for an affine null observer demonstrate that the black hole evaporation proceeds smoothly and the near-extremal black hole evolves back to an extremal ground state, until this approximation breaks down.Comment: 19 pages, 14 figure

    Solitonic Strings and BPS Saturated Dyonic Black Holes

    Get PDF
    We consider a six-dimensional solitonic string solution described by a conformal chiral null model with non-trivial N=4N=4 superconformal transverse part. It can be interpreted as a five-dimensional dyonic solitonic string wound around a compact fifth dimension. The conformal model is regular with the short-distance (`throat') region equivalent to a WZW theory. At distances larger than the compactification scale the solitonic string reduces to a dyonic static spherically-symmetric black hole of toroidally compactified heterotic string. The new four-dimensional solution is parameterised by five charges, saturates the Bogomol'nyi bound and has nontrivial dilaton-axion field and moduli fields of two-torus. When acted by combined T- and S-duality transformations it serves as a generating solution for all the static spherically-symmetric BPS-saturated configurations of the low-energy heterotic string theory compactified on six-torus. Solutions with regular horizons have the global space-time structure of extreme Reissner-Nordstrom black holes with the non-zero thermodynamic entropy which depends only on conserved (quantised) charge vectors. The independence of the thermodynamic entropy on moduli and axion-dilaton couplings strongly suggests that it should have a microscopic interpretation as counting degeneracy of underlying string configurations. This interpretation is supported by arguments based on the corresponding six-dimensional conformal field theory. The expression for the level of the WZW theory describing the throat region implies a renormalisation of the string tension by a product of magnetic charges, thus relating the entropy and the number of oscillations of the solitonic string in compact directions.Comment: 27 Pages, uses RevTeX (solution for the axion field corrected, erratum to appear in Phys. Rev. D

    Geometric Entropy of Nonrelativistic Fermions and Two Dimensional Strings

    Get PDF
    We consider the geometric entropy of free nonrelativistic fermions in two dimensions and show that it is ultraviolet finite for finite fermi energies, but divergent in the infrared. In terms of the corresponding collective field theory this is a {\em nonperturbative} effect and is related to the soft behaviour of the usual thermodynamic entropy at high temperatures. We then show that thermodynamic entropy of the singlet sector of the one dimensional matrix model at high temperatures is governed by nonperturbative effects of the underlying string theory. In the high temperature limit the ``exact'' expression for the entropy is regular but leads to a negative specific heat, thus implying an instability. We speculate that in a properly defined two dimensional string theory, the thermodynamic entropy could approach a constant at high temperatures and lead to a geometric entropy which is finite in the ultraviolet.Comment: LaTex, 19 pages, no figures. Some references adde
    • 

    corecore