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Abstract

1. Hidden Markov models are prevalent in animal movement modelling, where

they are widely used to infer behavioural modes and their drivers from various types

of telemetry data. To allow for meaningful inference, observations need to be equally

spaced in time, or otherwise regularly sampled, where the corresponding temporal

resolution strongly affects what kind of behaviours can be inferred from the data.

2. Recent advances in biologging technology have led to a variety of novel teleme-

try sensors which often collect data from the same individual simultaneously at dif-

ferent time scales, e.g. step lengths obtained from GPS tags every hour, dive depths
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obtained from time-depth recorders once per dive, or accelerations obtained from

accelerometers several times per second. However, to date, statistical machinery to

address the corresponding complex multi-stream and multi-scale data is lacking.

3. We propose hierarchical hidden Markov models as a versatile statistical frame-

work that naturally accounts for differing temporal resolutions across multiple vari-

ables. In these models, the observations are regarded as stemming from multiple,

connected behavioural processes, each of which operates at the time scale at which

the corresponding variables were observed.

4. By jointly modelling multiple data streams, collected at different temporal

resolutions, corresponding models can be used to infer behavioural modes at multiple

time scales, and in particular help to draw a much more comprehensive picture of an

animal’s movement patterns, e.g. with regard to long-term vs. short-term movement

strategies.

5. The suggested approach is illustrated in two real-data applications, where we

jointly model i) coarse-scale horizontal and fine-scale vertical Atlantic cod (Gadus

morhua) movements throughout the English Channel, and ii) coarse-scale horizontal

movements and corresponding fine-scale accelerations of a horn shark (Heterodontus

francisci) tagged off the Californian coast.

Keywords: animal movement modelling; biologging; state-space models; statistical ecol-

ogy; temporal resolution; time series modelling.

1 Introduction

Movement ecology seeks to identify and understand the key patterns in animals’ move-

ments through space, the factors, both intrinsic and extrinsic, that affect animal move-

ment, and ultimately how individual behaviour and movement scales to population-level

processes. In the past 20 years, the ability to remotely track animals has revolutionised

the field of movement ecology, especially via GPS (Global Positioning System) technol-
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ogy (Rutz & Hays, 2009; Hussey et al., 2015). To make sense of the corresponding new

types of data, various statistical models were developed and are now routinely applied by

ecologists (Morales et al., 2004; Jonsen et al., 2005; Johnson et al., 2008; Patterson et al.,

2009). However, in recent years, we have witnessed a second wave of advancements in

biologging technology, perhaps most notably accelerometry, which provide new opportu-

nities but also pose new statistical challenges (Leos-Barajas et al., 2017a). Generally, we

are now able to remotely track and monitor animals at increasingly long time scales but

at the same time also at increasingly fine temporal resolutions. To make full use of the

corresponding complex new types of data, the ecologist’s toolbox for analysing biologging

data needs to be extended to include a modelling framework that is sufficiently versatile

to accommodate heterogeneous, multi-stream, and multi-scale data — e.g. high frequency

activity data via accelerometers and relatively low resolution geolocation data via active

tracking or GPS tags — in a single model.

Over the last decade, hidden Markov models (HMMs) have emerged as a popular tool

for animal movement modelling, where they provide a natural framework to infer be-

havioural modes and their various drivers from different types of telemetry data (Michelot

et al., 2016; Whoriskey et al., 2017; Grecian et al., 2018). A basic HMM comprises an

observed movement process that depends on a single underlying hidden state process. The

states are typically interpreted to be proxies for behavioural modes such as resting, forag-

ing, or travelling. In ecological applications, it is of particular interest to make inference

related to the influence of environmental covariates, e.g. regarding the behavioural re-

sponse of blue whales (Balaenoptera musculus) to sonar exposure (DeRuiter et al., 2016),

the effect of wind speed on the flying dynamics of Verreaux’s eagles (Aquila verreauxii ;

Leos-Barajas et al., 2017a), or diel variation in Florida panther (Puma concolor) move-

ments (Li & Bolker, 2017). In all these examples, HMMs have been proven to be a useful

tool to reveal new insights into the interaction between animals and their environment.

While observations in a basic HMM are typically required to be regularly sampled
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in time (or to follow some other regular sampling protocol, e.g. with observations made

whenever a marine mammal comes to the surface to breathe), recent advances in biologging

technology have led to a variety of novel telemetry sensors which often collect data from the

same individual simultaneously at different time scales. Typical examples are locations in

space and time obtained from GPS tags every hour, depth measurements obtained from

time-depth recorders every ten minutes, or accelerations obtained from accelerometers

several times per second. Since different types of behaviours may manifest themselves at

different time scales (Leos-Barajas et al., 2017b; Michelot et al., 2017), being able to collect

such multiple data streams, with differing temporal resolutions, offers various opportunities

for ecological inference. Furthermore, by considering data collected at different time scales,

joint models of such multi-scale data may contribute to reducing the effect of the often

arbitrarily chosen time intervals between observations.

However, as the state process in a basic HMM operates on the same time scale as

the movement process, these models do not readily accommodate multi-scale data. What

usually would be done to model such data within an HMM framework is either to down-

sample the observations from the different data streams to the coarsest of the different

time scales (e.g. to process hourly observations into daily means of those observations,

which can lead to a substantial loss of information that is actually contained in the raw

data; c.f. Griffiths et al., 2018), or to fit separate HMMs for the different variables, which

conceptually is clearly inferior to formulating and fitting a joint model for the different

variables, in particular with regard to identifying behavioural modes that affect multiple

observed variables. We demonstrate that these problems can to some extent be overcome

using hierarchical HMMs (HHMMs), where the observations are regarded as stemming

from multiple, connected behavioural processes, each of which operates at the time scale

at which the corresponding variables were observed.

HHMMs originate from the field of machine learning, where they have been introduced

as a versatile tool for pattern recognition tasks. In handwriting or voice recognition,
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for instance, different scales may be single letters or syllables, words, and sentences (Fine

et al., 1998). The hierarchy in that case results from the fact that several letters or syllables

taken together constitute a word, several words taken together constitute a sentence, and

so forth. Within HHMMs, these different levels are modelled using (distinct) hidden

state processes, which are correlated with each other. In ecological applications, HHMMs

have been previously applied in Leos-Barajas et al. (2017b), however considering only a

single observed process, e.g. horizontal movements. Here we extend those models to allow

for multiple observed processes, e.g. horizontal and vertical movements, or accelerations,

which may be observed at different time scales. By incorporating multiple data streams,

collected at different temporal resolutions, corresponding models may provide a much more

comprehensive picture of animal movement with clear implications for ecological inference

and conservation.

The paper is structured as follows: in Section 2, we introduce the main components

of HHMMs, discuss the underlying dependence assumptions, and provide some details

on maximum likelihood estimation of the model parameters. In addition, we briefly out-

line further topics related to HHMMs, including model selection, model checking, and

state decoding. In Section 3, we illustrate the suggested approach in two real-data ap-

plications, where we model i) coarse-scale horizontal and fine-scale vertical Atlantic cod

(Gadus morhua) movements throughout the English Channel, and ii) coarse-scale horizon-

tal movements and corresponding fine-scale accelerations of a horn shark (Heterodontus

francisci) tagged off the Californian coast.

2 Methodology

2.1 Hidden Markov models

A basic HMM for a P -dimensional time series comprises an observed state-dependent

process {Yt}t=1,...,T , Yt = (Y1,t, . . . , YP,t) (e.g. hourly step lengths and turning angles, in

5
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which case P = 2), which is driven by a hidden state process {St}t=1,...,T . The state process

is typically modelled as a discrete-time, N -state Markov chain with transition probability

matrix (t.p.m.) Γ = (γij), where

γij = Pr(St = j|St−1 = i), (1)

i, j = 1, . . . , N , denotes the probability of switching from state i at time t − 1 to state j

at time t, and initial distribution vector δ = (δi), where

δi = Pr(S1 = i), (2)

i = 1, . . . , N , denotes the probability of state i being active at time t = 1. Conditional

on St = i, i.e. on state i being active at time t, the observation vector Yt is drawn from

a distribution associated with state i, defined by the P -dimensional probability (density)

function f (i)(yt). Conditional on the entire state sequence, the observations Y1, . . . ,YT

are assumed to be independent of each other. Furthermore, it is convenient to also assume

the P different variables at time t to be conditionally independent of each other, given the

state at time t, such that f (i)(yt) is the product of univariate densities (or probabilities,

in the discrete case) f
(i)
k (yk,t), k = 1, . . . , P , i.e.

f (i)(yt) =
P
∏

k=1

f
(i)
k (yk,t), (3)

i = 1, . . . , N . These dependence assumptions (i.e. Markov property, conditional inde-

pendence across time and across variables) substantially facilitate statistical inference in

HMMs, but can in certain scenarios be unrealistic and may then need to be relaxed. The

dependence structure of such a basic HMM is illustrated in Figure 1.

Under the dependence assumptions made above, the likelihood of an HMM is given by

6
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Yt−1 Yt Yt+1

· · · · · · hidden

observed

Figure 1: Dependence structure of a basic hidden Markov model.

the matrix product

LHMM(y) = δP(y1)
T
∏

t=2

ΓP(yt)1, (4)

with diagonal matrix P(yt) = diag
(

f (1)(yt), . . . , f
(N)(yt)

)

, and 1 ∈ R
N is a column vector

of ones. Evaluation of (4) corresponds to applying the so-called forward algorithm, which

is a powerful tool that renders likelihood-based inference in HMMs fast and convenient;

see Zucchini et al. (2016) for details.

2.2 Hierarchical hidden Markov models

To extend the basic HMM in a way that allows for joint inference at multiple time scales, we

first distinguish between an observed coarse-scale P -dimensional state-dependent process

{Yt}t=1,...,T (e.g. hourly step lengths and turning angles), driven by a hidden coarse-

scale state process {St}t=1,...,T , and an observed fine-scale P ∗-dimensional state-dependent

process {Y∗

t,t∗}t∗=1,...,T ∗ (e.g. accelerations observed at say 1 hertz, in one, two, or three

dimensions), driven by a hidden fine-scale state process {S∗

t,t∗}t∗=1,...,T ∗ ; see Figure 2 for

an illustration of the model structure. We then segment the fine-scale observations into T

distinct chunks, each of length T ∗, such that each chunk contains all fine-scale observations

that were observed during the t-th sampling of the coarse-scale state process (e.g. all

T ∗ = 3600 accelerations that were observed during the t-th sampling of hourly step lengths

and turning angles). Subsequently, we connect each chunk of fine-scale observations to

one of N possible fine-scale HMMs, each of which has its own t.p.m. Γ∗(i) = (γ
∗(i)
k∗l∗), initial

7
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· · · St−1 St St+1 · · ·

Yt−1 Yt Yt+1

S∗

t,t∗S∗

t,t∗−1 S∗

t,t∗+1

Y∗

t,t∗−1 Y∗

t,t∗ Y∗

t,t∗+1

· · · · · ·· · · · · ·

· · · · · · observed

hidden

observed

Figure 2: Dependence structure of a basic hierarchical hidden Markov model.

distribution δ
∗(i) = (δ

∗(i)
k∗ ), and state-dependent distributions f ∗(i,k∗)(y∗

t,t∗), i = 1, . . . , N ,

k∗, l∗ = 1, . . . , N∗. The state of the coarse-scale state process that is active at time t,

St = i, is now assumed to select both the state-dependent distribution which generates

the observations at the coarse scale as well as the HMM which generates all fine-scale

observations during the t-th sampling of the coarse-scale state process. Thus, there is one

HMM (with its own t.p.m. and state-dependent distributions) associated with each of the

coarse-scale states.

We assume both state processes to be of first order (Markov property), and both

state-dependent processes to satisfy the two conditional dependence assumptions (across

time and across variables) as detailed in Section 2.1. The two different state processes

can be thought of as proxies for behavioural modes, or movement strategies, relevant at

longer term (coarse-scale state process) and shorter term (fine-scale state process) scales,

respectively.

Similar to (4), the likelihood of an HHMM is obtained as the matrix product

LHHMM(y,y∗) = δP(y1,y
∗

1)
T
∏

t=2

ΓP(yt,y
∗

t )1, (5)

8
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with diagonal matrixP(yt,y
∗

t ) = diag
(

LHMM*
1 (y∗

t )f
(1)(yt), . . . ,L

HMM*
N (y∗

t )f
(N)(yt)

)

, where

LHMM*
i (y∗

t ) is the likelihood of the t-th chunk of fine-scale observations being generated by

the i-th fine-scale HMM. A recursive algorithm to efficiently evaluate (5), which renders a

numerical maximisation of the likelihood fast and convenient, is provided in the Appendix.

2.3 Incorporating covariates

Covariates can be included in HHMMs by expressing some of the model parameters as

functions of these covariates. In principle, covariates can be included both in the state-

dependent processes, where they determine the parameters of the state-dependent distri-

butions, and in the state processes, where they affect the transition probabilities. Here we

focus on the latter as in ecological applications the interest usually lies in modelling the

effect of covariates on state occupancy.

To incorporate covariates in the coarse-scale state process, we express the transition

probabilities γij at time t as a function of some predictor ηij(xt), which in turn depends

on a Q-dimensional covariate vector xt = (x1,t, . . . , xQ,t). Using the multinomial logit

link to ensure that 0 < γij(xt) < 1 and
∑N

j=1 γij(xt) = 1 for all i, we obtain the t.p.m.

Γ(xt) =
(

γij(xt)
)

, with

γij(xt) =
exp(ηij

(

xt)
)

∑N

k=1 exp
(

ηik(xt)
) , where ηij(xt) =















β
(ij)
0 +

∑Q

k=1 β
(ij)
k xk,t if i 6= j;

0 otherwise.

(6)

Instead of estimating the state transition probabilities directly, we then estimate the re-

gression coefficients β
(ij)
k , i, j = 1 . . . , N , i 6= j, k = 0, . . . , Q.

In some applications, it is of particular interest to model seasonal variation or within-

day variation, i.e. to consider the time as a deterministic covariate rather than as a stochas-

tic one. To account for the corresponding periodic effects, trigonometric functions can be

9
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used, where the predictor in (6) can be rewritten as

ηij(xt) =















β
(ij)
0 + β

(ij)
1 sin

(

2πt
r

)

+ β
(ij)
2 cos

(

2πt
r

)

if i 6= j;

0 otherwise,

(7)

where r denotes the length of the period of interest (e.g. r = 24 in case of within-day

variation and hourly observations). For more flexibility, additional sine and cosine terms

with shorter cycles can be added to the predictor.

Covariate inclusion in the fine-scale state-process is analogous, though note that in

this case there is one t.p.m. Γ∗(i)(xt) =
(

γ
∗(i)
k∗l∗(xt)

)

for each state i of the coarse-scale state

process, i.e. N such matrices to be expressed as functions of covariates.

2.4 Model fitting

Using the forward algorithm, evaluation of (5) requires O(NT ∗N∗2 + TN2) operations,

which renders a numerical maximisation of the likelihood using some Newton-Raphson-

type optimisation routine, e.g. the R function nlm (R Core Team, 2017), practically feasible

even for long time series and moderate numbers of states. Typical challenges related to nu-

merical likelihood maximisation in HMMs, particularly parameter constraints, numerical

underflow, and local maxima, also apply to HHMMs. Specifically, to account for param-

eter constraints, we transform the constrained parameters into unconstrained parameters

using some one-to-one transformation and maximise the likelihood with respect to the

unconstrained parameters. To avoid numerical underflow, which may result from multi-

plying a large number of small probabilities in the likelihood calculation, we maximise the

log-likelihood and evaluate all quantities on the log-scale; see the implementation of the

forward algorithm in the Appendix. As the numerical maximisation might yield a local

rather then the global maximum of the likelihood, using good initial values for the search

is crucial. To increase the chance of having found the global maximum, a good strategy is

10
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to run the search from a range of different, possibly randomly selected initial values and

select the model that corresponds to the largest likelihood.

2.5 Model selection

Model selection primarily involves the specification of the state-dependent distributions,

the selection of the number of states (order selection), and variable selection (in case of

covariates being included), but could extend also to investigations of possible assumption

violations particularly regarding the dependence structure. The state-dependent distribu-

tions are typically determined by the data type of the variables considered: for positive

continuous-valued variables (e.g. step lengths, dive depths, or vertical movements), for in-

stance, gamma distributions provide a natural choice, whereas for circular variables (e.g.

turning angles), von Mises or wrapped Cauchy distributions are commonly used. Informa-

tion criteria, such as Akaike’s information criterion or the Bayesian information criterion,

provide a natural approach to order selection in HHMMs when fitted in a maximum like-

lihood framework. However, it has been shown that these criteria tend to favor overly

complex HMMs, with more states than seem biologically plausible, when used for ecologi-

cal data with complex features (Li & Bolker, 2017; Pohle et al., 2017). As these practical

problems are likely exacerbated in the more complex HHMM framework, we strongly ad-

vise against reliance on such criteria. Instead, we recommend to closely inspect fitted

models with different numbers of states, and then pragmatically choose the numbers of

states at both levels taking into account (ecological) expert knowledge.

2.6 Model checking

Model checking in HMM-type models is typically done based on so-called pseudo-residuals,

which use the probability integral transformation to assess whether any given observation

is well explained by the fitted model. For the coarse-scale observations, evaluation of the

11
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pseudo-residuals proceeds as in basic HMMs (see Zucchini et al., 2016). For the fine-scale

observations, it is convenient to first decode the coarse-scale Markov chain (see subsequent

section) and then to compute the pseudo-residuals separately for each chunk of fine-scale

observations conditional on the HMM active according to the decoded coarse-scale state.

Other strategies for model checking include comparing the empirical distribution of any

variable observed to the corresponding marginal distribution as implied under the fitted

model, or simulations from the fitted model to check if it can reproduce the key patterns

found in the empirical data (c.f. Langrock et al., 2013).

2.7 State decoding

In ecological applications, it is often of particular interest to decode the hidden states, i.e.

to compute the most likely sequence of states that may have given rise to the observations

under the fitted model. The simplest and most natural approach is to first decode the

coarse-scale states s1, . . . , sT (taking into account both coarse-scale and fine-scale obser-

vations), and then, for any time t of the coarse-scale state process, decode the fine-scale

states s∗t,1, . . . , s
∗

t,T ∗ conditional on the most likely coarse-scale state to be active at time

t (taking into account only the fine-scale observations). The decoding can be done either

locally, considering each time point in isolation, or globally, considering the time series as

a whole. In practice, global decoding, which can conveniently be carried out using the

Viterbi algorithm, is usually the default choice and therefore used throughout this paper.

Technical details on both local and global decoding transfer directly from basic HMMs to

HHMMs; see Zucchini et al. (2016) for details.

12
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3 Real-data applications

3.1 Atlantic cod movement

Atlantic cod (Gadus morhua) is a commercially valuable demersal fish species found

throughout the shelf seas surrounding the British Isles. For decades, cod have been heavily

exploited, resulting in steep declines in abundance. Despite significant attention to stock

assessment and fisheries management, efforts to rebuild cod stocks have had limited suc-

cess (ICES, 2018). To facilitate informed conservation actions, information about when,

where, and how individuals move and undertake key life-history events are essential (Hays

et al., 2019; Hussey et al., 2015). The tagging of cod to gain these information has been

ongoing for a number of years and has greatly increased our knowledge of individual be-

haviour (Righton et al., 2001; Hobson et al., 2007; Hobson et al., 2009) and stock structure

(Neat et al., 2014).

To illustrate the application of HHMMs, we jointly model coarse-scale horizontal and

fine-scale vertical movements from a single cod, where we are particularly interested in

understanding diel and circatidal patterns in the cod’s vertical movements and how the

latter are driven by its horizontal movements. As demersal fish rarely swim in surface

waters (which is a pre-requisite for satellite tags; Rutz & Hays, 2009), tagging was achieved

using an archival data storage tag (DST). DSTs are typically pre-programmed to record

depth at regular time intervals for the duration of deployment (here every 10 minutes).

From this, we calculated log-vertical movements (log-differences in depth per 10-minute

interval in meters) and estimated daily geolocations using a single-state version of the tidal

geolocation model of Pedersen et al. (2008), which were then processed to give daily step

lengths and turning angles. The method has been adapted to ensure that the underlying

diffusion model operates under a fixed diffusivity parameter (30 kilometers per day2) and

does not switch between two based on the presence or absence of a tidal signal. As some

(one or two per day) of each day’s 144 depth observations are being used to generate

13
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the cod’s geolocations, some minor conditional dependence between the two movement

rates is expected, which for simplicity is neglected in the model formulation. To clarify,

only one (no tidal signal) or two (during the tidal signal and not during the tidal signal)

depth observations representing the daily maxima are used per day. This is because

they — alongside model-fitted estimates of tidal range and time — have shown to yield

accurate geolocations in a number of demersal fish species, including, inter alia, European

plaice (Pleuronectes platessa; Hunter et al., 2004), thornback ray (Raja clavata; Hunter

et al., 2005), and Atlantic cod (Righton et al., 2007). For further details we direct the

interested reader to Pedersen et al. (2008). Thus, we ended up with two separate time

series sampled at different time scales: vertical movements at 10-minute intervals and

horizontal movements at daily intervals, i.e. for each of the T = 291 daily horizontal

movements, we have T ∗ = 144 10-minute vertical movements. Previous work has often

overcome this difference in sampling by either gaining meaningful inference from a single

dimension (e.g. Hobson et al., 2007) or, in the case of Griffiths et al. (2018), who analyse

movements in both dimensions, by simplifying the vertical dimension at the daily scale.

Here we demonstrate how HHMMs can be used to analyse movements in both dimensions

while retaining the vertical dimension at the 10-minute scale.

Based on an exploratory data analysis and a comparison of fitted models with different

numbers of states, we chose N = 3 states for the coarse-scale state process, as visual

inspection of the data revealed two different types of horizontal movements, one of which

corresponds to again two different vertical movement patterns, which can only be captured

if a third state is considered at the coarse scale. Each of the coarse-scale states was

then associated with an HMM with N∗ = 3 fine-scale states (resulting in 9 fine-scale

states in total), which allows us to draw a nuanced yet not overly complex picture of

the cod’s vertical movements. To model diel variation in the vertical movements, the

transition probabilities of the Markov chains determining the fine-scale state processes

were estimated as functions of the time of day, with the predictors specified as given
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Figure 3: Estimated state-dependent distributions of coarse-scale step lengths (left panel)
and turning angles (right panel) of an Atlantic cod. Coarse-scale states 1 and 2 may be in-
terpreted as resting/foraging and mobile/foraging behaviours, respectively, which are very
similar in terms of horizontal movements but substantially differ in the corresponding ver-
tical movement patterns, while coarse-scale state 3 may be linked to a travelling/migrating
behaviour.

in (7); the coarse-scale state transition probabilities were assumed to be constant over

time. For the step lengths and vertical movements, we assumed gamma distributions

(with an additional point mass on zero in case of the vertical movements to account for

the zeros observed), while for the turning angles, von Mises distributions were considered.

The computation time required to fit the model was 6.1 hours, where the likelihood was

evaluated in C++ and numerically maximised using the R function nlm (R Core Team,

2017) on a 3.6 GHz Intel R© CoreTM i7 CPU.

The estimated state-dependent distributions of coarse-scale step lengths and turning

angles are displayed in Figure 3. Coarse-scale states 1 and 2 capture short, slightly less di-

rected horizontal movements, where we interpret coarse-scale state 1 as a resident/foraging

behaviour and coarse-scale state 2 as a mobile/foraging behaviour. Although these two

states are very similar in terms of horizontal movements, they substantially differ in the

corresponding vertical movement patterns (see below). Coarse-scale state 3 relates to

relatively longer, slightly more directed horizontal movements, which may be linked to a

travelling/migrating behaviour. The t.p.m. of the coarse-scale state process was estimated

15
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as

Γ̂ =











0.945 0.000 0.055

0.064 0.777 0.160

0.098 0.075 0.827











,

which implies the stationary distribution (0.618, 0.096, 0.286), indicating that approxi-

mately 62% (180 days), 10% (28 days), and 29% (83 days) of the observations were gen-

erated in coarse-scale state 1, 2, and 3, respectively.

The estimated state-dependent distributions of fine-scale vertical movements and the

associated stationary distributions of the corresponding fine-scale state processes as func-

tions of the time of day along with 95% confidence intervals are displayed in Figure 4.

When the cod was in coarse-scale state 1 (resting/foraging), then the vertical movements

were generated by the three state-dependent distributions displayed in the upper panel.

The level of vertical movement was fairly low (according to the stationary distribution,

the cod was in fine-scale state 3, which corresponds to a relatively high level of verti-

cal movement, less than 20% of the time) and slightly increased during the day (where

it spent up to 75% of the time in fine-scale state 2, which corresponds to a relatively

moderate level of vertical movement, and less than 25% of the time in fine-scale state 1,

which corresponds to a relatively low level of vertical movement). When the cod was in

coarse-scale state 2 (mobile/foraging), then the vertical movements were generated by the

three state-dependent distributions displayed in the center, which correspond to a very

low level of vertical movement (all three state-dependent distributions have considerably

smaller means than those corresponding to coarse-scale states 1 and 3), where state oc-

cupancy (as indicated by the associated stationary distribution) is not much affected by

the time of day. When the cod was in coarse-scale state 3 (travelling/migrating), then the

vertical movements were generated by the three state-dependent distributions displayed in

the lower panel. Here the opposite was the case: the level of vertical movement was much

higher relative to coarse-scale states 1 and 2 (fine-scale state 3, whose state-dependent
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Figure 4: Estimated state-dependent distributions of fine-scale vertical movements (left
panel) of an Atlantic cod and associated stationary distributions of the corresponding
fine-scale state processes as functions of the time of day along with 95% confidence in-
tervals (right panel) for coarse-scale state 1 (resting/foraging), 2 (mobile/foraging), and 3
(travelling/migrating), respectively. Fine-scale states 1, 2, and 3 represent relatively low,
moderate, and high levels of vertical movement, respectively, where the corresponding
levels substantially differ across the different coarse-scale states (the means of the state-
dependent distributions for fine-scale state 3, for instance, vary from 0.355 in coarse-scale
state 2 over 0.689 in coarse-scale state 1 to 1.983 in coarse-scale state 3).
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distribution has a mean of 1.983 and therefore captures much higher vertical movement

activity than those corresponding to fine-scale state 3 within the HMMs corresponding to

coarse-scale states 1 (0.689) and 2 (0.355), was — depending on the time of day — active

between 15% and 45% of the time) and slightly decreased during the day (though note

that due to the relatively high uncertainty associated with the stationary distributions

these results should be treated with some caution).

The decoded horizontal movement track and three example sequences of fine-scale

vertical movements for the different coarse-scale states are displayed in Figure 5, where the

decoding was performed using the Viterbi algorithm as described in Section 2.7. The cod

spent most of its time (178 days) in coarse-scale state 1, where reduced rates of movement

indicate prolonged periods of resting or localised foraging. This was then interspersed by

two travelling/migrating periods associated with coarse-scale state 3 (81 days) as the cod

traversed the English Channel, and some periods spent in coarse-scale state 2 (32 days).

Throughout the time spent in coarse-scale state 1, the associated fine-scale state pro-

cess exhibited clear diurnal patterns (similar trends are found in Løkkeborg, 1998). During

the day, the level of vertical movement increased, as the cod was more likely to switch

from fine-scale state 1 to fine-scale state 2. This may be interpreted as localised foraging,

as cod frequently move off the seafloor to pursue benthic-dwelling prey (e.g. crustaceans

or other small fish species) via visual predation (Adlerstein & Welleman, 2000; Hobson

et al., 2009). The increased probability of switching back to fine-scale state 1 during the

night points towards a much more resting-like behaviour as the cod returns to the seafloor

(as observed in Hobson et al., 2007). coarse-scale state 2, in comparison, involves a much

lower level of vertical movement, which is not much affected by the time of day. This could

indicate an intermediate behavioural type, where the cod was foraging and remained close

to the seabed while being slightly more mobile in the horizontal dimension relative to

coarse-scale state 1 (i.e. it was not resident). Throughout the time spent in coarse-scale

state 3, the cod was clearly migrating, exhibiting increased rates of horizontal movement,
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Figure 5: Decoded horizontal movement track (left panel) and three example sequences of
decoded fine-scale vertical movements (right panel) of an Atlantic cod, one for coarse-scale
state 1 (resting/foraging; t = 252), one for coarse-scale state 2 (mobile/foraging; t = 86),
and one for coarse-scale state 3 (travelling/migrating; t = 48), each of length 24 hours.
The white squares on the maps in the left panel indicate the days which were chosen for
the three example sequences displayed in the right panel.
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slightly more uniform directionality, and elevated rates of vertical movement as it transits

the English Channel. Greater vertical movements during migration could indicate the use

of circatidal selective tidal stream transport (STST), as the cod moves up off the seabed

into the water column during favourable tides and uses the tide’s velocity to efficiently

cruise in the desired direction. STST is more commonly seen in flatfish such as European

plaice (Pleuronectes platessa; Hunter et al., 2004), however, cod have been shown to use

this highly efficient means of transport during migration in the North Sea (Righton et al.,

2007).

Two findings are noteworthy: first, the presence of diel vertical movement patterns

in the fine-scale state process associated with coarse-scale state 3 (travelling/migrating),

which illustrates that vertical activity is high during the night (as illustrated in the bottom

right panel of Figure 5); second, that coarse-scale state 2 (mobile/foraging) mostly occurs

during post-spawning migration, as cod transit from spawning grounds in the southern

North Sea to feeding grounds in the eastern English Channel. The fine-scale patterns of

vertical movement identified during coarse-scale state 1 are clear indications that cod are

able to vary their feeding and foraging patterns in relation to prey availability, whether

prey are available by day, by night, or only during crepuscular periods. The variable

patterns of vertical movement across coarse-scale states 2 and 3 may suggest that cod are

capable of migrating quickly to reach spawning grounds after a summer spent foraging

on rich feeding grounds or moving more slowly and taking advantage of food resources to

recover energy after the spawning period. Such adaptive migratory behaviour could easily

be overlooked by studies that consider movement in only one dimension (e.g. Hobson et al.,

2007) or studies that only consider movement rates at the daily scale (e.g. Griffiths et al.,

2018), which highlights the potential of the HHMM approach.

Quantile-quantile plots and autocorrelation functions of normal pseudo-residuals for

coarse-scale step lengths and turning angles and three example sequences of fine-scale

vertical movements, each computed as described in Section 2.6, are displayed in Figure
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Figure 6: Quantile-quantile plots and autocorrelation functions of normal pseudo-residuals
for coarse-scale step lengths and turning angles and three example sequences of fine-
scale vertical movements, one for coarse-scale state 1 (resting/foraging; t = 252), one for
coarse-scale state 2 (mobile/foraging; t = 86), and one for coarse-scale state 3 (travel-
ling/migrating; t = 48; each of length 24 hours). The three example sequences considered
here are the same as those displayed in Figure 5, where the colours indicate the Viterbi-
decoded states.

6. The plots indicate some minor lack of fit regarding the marginal distributions of the

different variables, and also some residual correlation in the step lengths series. Overall,

the magnitude of the lack of fit found here is anything but unusual for movement modelling

exercises, due to the very complex patterns typically found in such data. Thus, we consider

the goodness of fit of our model to be satisfactory. In principle, more flexible state-

dependent distributions can be used to improve the fit (c.f. Langrock et al., 2018), which

however we refrain from investigating further as our aim here is to present an illustrative

case study (thus trading some relatively minor lack of fit against a more complex model

formulation, which would complicate the interpretation).
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3.2 Horn shark movement

Horn sharks (Heterodontus francisci) are abundant, nocturnally active sharks associated

with rocky reefs and kelp beds in southern California (Nelson & Johnson, 1970; Love,

1991). Horn sharks are relatively small (< 122 centimeters) and as non-obligate ram

ventilators they can rest on the sea floor for relatively long periods of time (Compagno,

2001). Despite their importance as meso-predators in rocky reef habitats, surprisingly

little work has focused on their movements and behaviours (Strong, 1989; Compagno,

2001). Previous observations have found horn sharks to have a relatively high site fidelity

to a reef (Strong, 1989). However, to what spatio-temporal extent they use the reef for

various behaviours (i.e. resting, foraging, etc.) is unknown.

2 sources of data were collected from a horn shark at Santa Catalina Island, California,

USA: geopositional and acceleration data. Custom tag packages were externally attached

to the dorsal fin of the shark that included an accelerometer data logger (Technosmart,

AxyDepth) and an acoustic transmitter (Vemco V9 continuous pulse pinger, 2000 mil-

liseconds). The shark was actively tracked from a tracking vessel above using a Vemco

VR100 on-board receiver and VH110 directional hydrophone. At the end of the tracking

duration, divers relocated the shark to remove the tag package and download data from

the accelerometer data logger. During active tracking, geopositions were estimated for the

tracking vessel relative to that of the tagged shark. Although boat position was recorded

every 2 seconds, position data were filtered according to the closest possible estimations

of the shark to the boat. Geopositional error for the shark was estimated to be 5 metres

(via range tests at the study location). However, at times the shark could be active yet

simply not travel a large enough distance relative to positional measurement error to de-

tect a change in geoposition. This leads to many consecutive data points with the same

coordinates that, on their own, provide no indication of whether the shark was resting or

not. Acceleration data were recorded continuously at 25 hertz and provide a much more

fine-scaled picture of the overall body movements of the shark because it records move-

22

This article is protected by copyright. All rights reserved. 



A
c

c
e

p
te

d
 A

r
ti

c
le

ments in three orthogonal dimensions, the dorso–ventral, anterior–posterior, and lateral

axes (Shepard et al., 2008). We summarised the acceleration signal across the 3 dimen-

sions by calculating the overall dynamic body acceleration (ODBA) as a general measure

of activity (Wilson et al., 2006).

While acceleration data were continuously recorded, geoposition data were collected

in bouts over the course of one night, resulting in T = 2694 geopositions observed at a

temporal resolution of 2 seconds splitted into 194 segments, where the minimum (mean,

maximum) number of observations in each segment is 6 (15, 96), corresponding to a

duration of 12 (30, 192) seconds, respectively. As a general measure of displacement, we

calculated the Euclidean distance, yt, between consecutive geopositions, and paired each

distance with the corresponding T ∗ = 50 ODBA values, y∗t,t∗ , produced during this time

frame. Once we combine the two time series, we have two processes that we model: one

occurring at a coarse scale of 2 seconds, producing a value of distance and 50 sequential

ODBA values, and within the 2 seconds time frame, a fine-scale process that describes

the evolution of the 50 ODBA values during the 2 seconds. Due to the measurement error

associated, the horn shark may be active yet not travel far enough to record a change in

geoposition. Keeping this in mind, we constructed N = 3 coarse-scale state processes that

we generally interpret as i) zero distance travelled, yt = 0, and containing relatively larger

values of ODBA produced, indicating high activity, ii) zero distance travelled, yt = 0, and

mostly lower values of ODBA produced, indicating a resting period, and iii) some distance

travelled, yt > 0, and corresponding ODBA values. For yt > 0, we defined categories of

distances with cutoffs y0 < y1 < · · · < yJ in order to construct a so-called histogram

distribution of step lengths. Overall, we define N = 3 coarse-scale state processes, each of

which was then associated with an HMM with N∗ = 3 fine-scale states. The specification

of N∗ = 3 for each coarse-scale state reflects that periods of active movement are a

composition of three general activity levels, which, for consistency, we adopted when there

is no change in geoposition. In this case study, no covariate influence was modelled. The
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Figure 7: Estimated state-dependent histogram distribution of coarse-scale step lengths
of a horn shark. Coarse-scale state 3 is indicative of travelling, while coarse-scale states 1
and 2 correspond to step lengths of zero, which substantially differ in the corresponding
acceleration patterns.

computation time required to fit the model was 2.2 hours.

The estimated state-dependent distributions of coarse-scale step lengths are displayed

in Figure 7. The t.p.m. of the coarse-scale state process was estimated as

Γ̂ =











0.418 0.218 0.364

0.081 0.536 0.383

0.119 0.279 0.602











,

which implies the stationary distribution (0.150, 0.363, 0.487), indicating that approxi-

mately 15% (798 seconds), 36% (1954 seconds), and 49% (2596 seconds) of the observations

were generated in coarse-scale state 1, 2, and 3, respectively.

The estimated state-dependent distributions of fine-scale accelerations for the different

coarse-scale states are displayed in Figure 8. The t.p.m.s of the fine-scale state processes
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were estimated as

Γ̂
∗(1)

=











0.949 0.051 0.000

0.045 0.944 0.011

0.000 0.029 0.971











, Γ̂
∗(2)

=











0.962 0.038 0.000

0.040 0.906 0.054

0.000 0.067 0.933











,

Γ̂
∗(3)

=











0.961 0.039 0.000

0.030 0.954 0.016

0.000 0.041 0.959











,

which imply the stationary distributions (0.397, 0.444, 0.159), (0.369, 0.348, 0.282) and

(0.360, 0.460, 0.179).

Coarse-scale states 1 and 2 are characterized by no change in estimated geoposition

of the shark but, as seen in Figure 8, contrasting distributions of ODBA values were

produced during the 2 second time frame. Coarse-scale state 1 generally produces much

higher values of ODBA than coarse-scale state 2, indicating that the shark is quite active

during these periods. Within coarse-scale state 1, the ODBA values captured in fine-scale

state 3 can even be larger than the ODBA values produced when the shark is travelling

(see also Figure 9 for example sequences where this is the case). While persistence in

coarse-scale state 1 is low, as demonstrated by the t.p.m. of the coarse-scale state process,

the track analysed is only from one night and for one shark. Overall, the shark spent about

15% of the time it was tracked not travelling but active, 36% of the time not moving and

resting, and 49% of the time travelling around reefs at Santa Catalina Island.

This case study demonstrates how horn sharks can periodically rest in-between trav-

elling bouts, making it difficult to distinguish between active and resting behaviours us-

ing conventional movement models from active tracking. The framework presented here

demonstrates the beginning stages of combining multiple data streams to make inferences

about the shark’s behaviours, particularly when travel distance is zero. The horn shark

in this example switched between behavioural states often along its traveled path, and
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Figure 8: Estimated state-dependent distributions of fine-scale acceleration of a horn
shark for coarse-scale state 1 (zero distance travelled), 2 (zero distance travelled), and 3
(travelling), respectively. Fine-scale states 1, 2, and 3 represent relatively low, moderate,
and high levels of acceleration, respectively, where the corresponding levels substantially
differ across coarse-scale states (the means of the state-dependent distributions for fine-
scale state 3, for instance, vary from 0.191 in coarse-scale state 2 over 0.323 in coarse-scale
state 3 to 0.722 in coarse-scale state 1).

was frequently in coarse-scale state 1 (zero distance travelled, high activity). This area

at Santa Catalina Island is composed of smaller reefs in relatively close proximity. Horn

sharks are abundant in this area with a relatively high, annual site-fidelity (Strong, 1989),

therefore understanding their level of activity, especially in regards to foraging behaviours,

can lead to better predictions on how rocky reef communities will be affected.

Quantile-quantile plots and autocorrelation functions of normal pseudo-residuals for

three example sequences of fine-scale accelerations, each computed as described in Section
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when coarse−scale state 3 is active...

Figure 9: Decoded coarse-scale horizontal movement track (left panel) and three example
sequences of decoded fine-scale accelerations (right panel) of a horn shark, one for coarse-
scale state 1 (zero distance travelled; t = 462, . . . , 466), one for coarse-scale state 2 (zero
distance travelled; t = 1202, . . . , 1206), and one for coarse-scale state 3 (travelling; t =
1220, . . . , 1224), each of length 10 seconds. The white squares on the maps in the left panel
indicate the time intervals which were chosen for the three example sequences displayed
in the right panel.
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Figure 10: Quantile-quantile plots and autocorrelation functions of normal pseudo-
residuals for three example sequences of fine-scale accelerations of a horn shark, one for
coarse-scale state 1 (zero distance travelled; t = 462, . . . , 466), one for coarse-scale state 2
(zero distance travelled; t = 1202, . . . , 1206), and one for coarse-scale state 3 (travelling;
t = 1220, . . . , 1224), each of length 10 seconds. The three example sequences considered
here are the same as those displayed in Figure 9, where the colours indicate the Viterbi-
decoded states.

2.6, are displayed in Figure 10. (The high proportion of zero step lengths within the

coarse-scale process renders it difficult to assess the corresponding goodness of fit using

pseudo-residuals, such that we show residual plots only for the fine-scale data.) The

autocorrelation function of the pseudo-residuals obtained for the fine-scale process at

t = 462, . . . , 466 indicates a violation of the conditional independence assumption across

observations. While the HHMM is able to distinguish between active and non-active

behaviour when the estimated change in geoposition is zero, the model lacks some structure

required for the patterns observed in the acceleration data. However, the quantile-quantile

plots for t = 1202, . . . , 1206 and t = 1220, . . . , 1224 show a much better model fit. For

ease of model presentation, we did not incorporate additional structure into the HHMM

and leave it as an area in which we can continue to develop this modelling framework for

application to acceleration data.
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4 Discussion

Tracking individual animals can help us to develop a better understanding of an animal’s

behavioural decisions and the internal and external drivers thereof, and hence in principle

also to infer properties of a species. A key aspect in any such analysis is the temporal res-

olution at which observations are made. A coarse resolution, e.g. with daily observations,

can be suitable when the focus lies on migratory patterns, whereas fine-scale data, e.g.

as often collected with accelerometers, can reveal detailed information up to individual

foraging attempts. While high-resolution data is in principle more informative, here we

argue that some of the corresponding short-term decisions made by an animal have to be

seen relative to the current context. For example, as shown in the analysis of the Atlantic

cod track, complex fine-scale movement patterns, such as the effect of the time of day on

vertical movement, would not have been revealed without taking the general coarse-scale

behavioural context (resting/foraging vs. travelling/migrating) into consideration. Vice

versa, to obtain a more detailed understanding of movement patterns that appear to man-

ifest themselves at coarser scales, it will often be helpful to be able to additionally “zoom

in” at a much finer scale. For example, for marine animals, conventional approaches to

movement modelling using positional data alone typically aim to infer a combination of

resting, area-restricted search, and travelling behaviours. However, as demonstrated in

the analysis of the horn shark track, resting, as exemplified by no change in geoposition,

is not a valid interpretation for animals that are demersal, non-obligate ram ventilators.

In particular, we show that horn sharks make frequent changes across the travelling and

not travelling states, and further may be quite active even when they are not actively

travelling. In this case, using both fine-scale data, such as acceleration signals to inform

activity, but also positional data at a relatively coarser time scale to infer whether the

shark was actively travelling or not, was necessary to more fully understand the horn shark

behaviour.
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Fortunately, new types of remote sensing data, in particular such that result from

outfitting individual animals with multiple sensors — potentially sampling at differing

temporal resolutions — in principle do give us the opportunity to draw much more com-

prehensive pictures of the dynamics of an animal’s behavioural modes. However, these

new types of data are rather challenging from the statistical point of view. Our work pro-

vides a new modelling framework, the class of HHMMs, which due to its intuitive appeal,

its versatility in accommodating various dependence structures and essentially any type

of time series data, and the relative ease with which it can be implemented, in principle

seems well-suited to handle such data and allow for comprehensive ecological inference

from multi-stream and multi-scale data. Unlike previous approaches based on state-space

models (SSMs; Jonsen et al., 2005; Auger-Méthé et al., 2016), in the HHMM formulations

considered in our case studies we do not explicitly account for measurement error, which

can in fact be large in particular for the Atlantic cod location data, which is itself the out-

put of a geolocation model. Depending on the magnitude of the error, failing to propagate

this uncertainty through to the statistical model for movement and behaviour can affect

state predictions, and hence ultimately also biological inference. Despite this caveat, we

see strong potential for HHMMs to become increasingly important in the future, especially

due to the ongoing technological progress in biologging technology.

However, the immense flexibility of HHMMs may sometimes also be a curse: chal-

lenges which are inherent in basic HMMs, e.g. model selection regarding the number of

states or the dependence structure assumed (Pohle et al., 2017), are inevitably exacerbated

by the more complex structure of HHMMs. The likelihood-based inferential framework

developed in this paper does in principle lend itself to straightforward application of in-

formation criteria. However, we strongly advise against over-reliance on such criteria, and

instead recommend a more pragmatic approach to finding a suitable model, where expert

knowledge of ecologists, thorough exploratory data analysis, and close inspection of how

well any plausible candidate model captures the key patterns of interest and relevance, to-
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gether guide (and justify) the model selection process. Similarly, while formal approaches

such as pseudo-residual analyses to model checking in (H)HMMs do exist, it will not usu-

ally be feasible to make a simple binary decision on whether or not a model is suitable

based on these, since i) for data as complex such as those considered in our case studies,

any reasonably simple statistical model will be deemed inadequate, and ii) unlike in basic

HMMs, the model checking in HHMMs applies to different layers, which complicates the

decision on the model’s suitability. Again, we advocate a holistic approach to checking a

fitted model, which most importantly must not lose sight of the actual research question

of interest. The “curse of complexity” may have consequences also on the interpretation

of an HHMM. While for basic HMMs, when applied to animal movement data, it is of-

ten straightforward to at least approximately link model states to biologically meaningful

behaviours — e.g. resting, foraging, and travelling when fitting a 3-state HMM to move-

ment data of a terrestrial animal — this may be more problematic within HHMMs, where

interpretations ought to be made at different scales.

Regarding the search for an adequate model, we do in fact observe a trend in the field of

movement ecology where well-established practices of statistical modelling — exploratory

data analysis, formulation of candidate models, selection between candidate models based

on some criterion, and checking of the model selected — are increasingly often replaced by

rather ad-hoc choices on the (often very complex) model used for inference. Clearly, this

development is a reason to be concerned. On the other hand, given the fast-increasing

complexity of telemetry data, it comes as no surprise that the development of flexible

yet reliable and robust statistical modelling routines are somewhat lacking behind (cf.

McClintock et al., 2012). Thus, what we argue for here is to first of all acknowledge the

great challenge of finding a suitable statistical model for any given animal telemetry data,

and then as a consequence be very thorough and transparent about modelling decisions

made, irrespective of whether their justification is based on formal criteria or on more

subjective assessments.
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The model formulation presented in this paper provides a basic framework for mod-

elling behavioural state switches underlying data collected at multiple scales. A simplifying

assumption that was implicitly made within our case studies was that the measurement

error was negligible relative to the scales at which movements were observed. This as-

sumption can in principle be relaxed in much the same way as is commonly done in SSMs,

by including the actual locations — or, more generally, metrics of interest — in the hid-

den components of the HHMM, with the state-dependent processes then describing the

measurement error. The main disadvantage of such an approach would be the increased

computational complexity (Patterson et al., 2017). The hierarchical structure of the model

could also be modified with regard to the number of layers considered. Specifically, in the

present work we focused on the case of two differing temporal resolutions, leading to

two hierarchically structured state processes. However, in analogy to speech recognition,

further layers could be introduced; e.g., there could be three layers, corresponding to

presence/absence of migratory behaviour (coarsest scale), foraging, resting, and travelling

modes (medium scale), and movements of individual body parts (finest scale). It seems

intriguing to potentially be able to fit such “complete” models of animal movement, on

the other hand such models would certainly not be straightforward to implement and to

handle. In such an extension, but also for the models presented in the current paper, an

important question is that of optimal statistical design. Specifically, it is of interest to

provide general recommendations as to which temporal resolution is needed at either scale

in order to answer the research question at hand. The issue of adequately designing animal

movement studies is in fact underappreciated in biologging in general (see Patterson et al.,

2017).
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Appendix

To evaluate the logarithm of the likelihood given in (5), we proceed as follows: first, we

evaluate the log-likelihoods of the fine-scale observations, corresponding to each of the T

chunks of fine-scale observations being generated by each of the N fine-scale HMMs as

selected by the coarse-scale state process.

Let φ
∗(i)
l∗,t∗ = log

(

f (i)(y∗

t,1, . . . ,y
∗

t,t∗ , s
∗

t,t∗ = l∗)
)

, l∗ = 1, . . . , N∗, denote the so-called fine-

scale log-forward probabilities under the i-th fine-scale HMM. The fine-scale log-forward

probabilities can be calculated via the forward algorithm, which amounts to applying the

recursion

φ
∗(i)
l∗,1 = log

(

δ
∗(i)
l∗ f ∗(i,l∗)(y∗

t,1)
)

= log
(

δ
∗(i)
l∗

)

+ log
(

f ∗(i,l∗)(y∗

t,1)
)

φ
∗(i)
l∗,t∗ = log

(

N∗

∑

k∗=1

exp
(

φ
∗(i)
k∗,t∗−1

)

γ
∗(i)
k∗l∗f

∗(i,l∗)(y∗

t,t∗)

)

= log

(

N∗

∑

k∗=1

exp
(

φ
∗(i)
k∗,t∗−1 + log

(

γ
∗(i)
k∗l∗

)

− ct−1

)

)

+ ct−1 + log
(

f ∗(i,l∗)(y∗

t,t∗)
)

,

t∗ = 2, . . . , T ∗, where ct = max(φ
∗(i)
1,t∗ , . . . , φ

∗(i)
N∗,t∗) is a constant that is used within the

log-sum-of-exponentials-function to prevent numerical underflow which may occur when

exponentiating large negative numbers.

Since LHMM
i (y∗

t ) = f (i)(y∗

t ) =
∑N∗

l∗=1 f
(i)(y∗

t , s
∗

t,T ∗ = l∗), the log-likelihood of the t-th

chunk of fine-scale observations being generated by the i-th fine-scale HMM follows as

log
(

L
HMM
i (y∗

t )
)

= log

(

N∗

∑

l∗=1

exp
(

φ
∗(i)
l∗,T ∗ − cT

)

)

+ cT . (1)

After having evaluated the log-likelihoods (1) for each of the T chunks of fine-scale

observations and N fine-scale HMMs, we calculate the so-called coarse-scale log-forward

1
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probabilities φj,t = log
(

f(y∗

1, . . . ,y
∗

t ,y1, . . . ,yt, st = j)
)

, j = 1, . . . , N , which can be

calculated in a similar way as in () by applying the recursion

φj,1 = log
(

δjL
HMM
j (y∗

1)f
(j)(y1)

)

= log(δj) + log
(

L
HMM
j (y∗

1)
)

+ log
(

f (j)(y1)
)

φj,t = log

(

N
∑

i=1

exp (φi,t−1) γijL
HMM
j (y∗

t )f
(j)(yt)

)

= log

(

N
∑

i=1

exp (φi,t−1 + log(γij)− ct−1)

)

+ ct−1 + log
(

L
HMM
j (y∗

t )
)

+ log
(

f (j)(yt)
)

,

t = 2, . . . , T , where ct = max(φ1,t, . . . , φN,t).

Since LHHMM(y,y∗) = f(y,y∗) =
∑N

j=1 f(y,y
∗, sT = j), the log-likelihood of the

HHMM follows as

log
(

L
HHMM(y,y∗)

)

= log

(

N
∑

j=1

exp(φj,T − cT )

)

+ cT .

2

This article is protected by copyright. All rights reserved. 


