62 research outputs found

    The temperature-jump problem for a variable collision frequency model

    Get PDF
    An analytical version of the discrete-ordinates method is used here in the field of rarefied-gas dynamics to solve a version of the temperature-jump problem that is based on a linearized, variable collision frequency model of the Boltzmann equation. In addition to a complete development of the discrete-ordinates method for the application considered, the computational algorithm is implemented to yield accurate numerical results for three specific cases: the classical BGK model, the Williams model (the collision frequency is proportional to the magnitude of the velocity), and the rigid-sphere model

    Insights into the Second Law of Thermodynamics from Anisotropic Gas-Surface Interactions

    Full text link
    Thermodynamic implications of anisotropic gas-surface interactions in a closed molecular flow cavity are examined. Anisotropy at the microscopic scale, such as might be caused by reduced-dimensionality surfaces, is shown to lead to reversibility at the macroscopic scale. The possibility of a self-sustaining nonequilibrium stationary state induced by surface anisotropy is demonstrated that simultaneously satisfies flux balance, conservation of momentum, and conservation of energy. Conversely, it is also shown that the second law of thermodynamics prohibits anisotropic gas-surface interactions in "equilibrium", even for reduced dimensionality surfaces. This is particularly startling because reduced dimensionality surfaces are known to exhibit a plethora of anisotropic properties. That gas-surface interactions would be excluded from these anisotropic properties is completely counterintuitive from a causality perspective. These results provide intriguing insights into the second law of thermodynamics and its relation to gas-surface interaction physics.Comment: 28 pages, 11 figure
    • …
    corecore