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The temperature-jump problem for a variable collision frequency model

L. B. Barichello
Instituto de Matemtica, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, RS, Brazil

A. C. R. Bartz
Programa de Ps-Gradua@o em Matemtca Aplicada, Universidade Federal do Rio Grande do Sul,
91509-900 Porto Alegre, RS, Brazil

M. Camargo? ~ )
Programa de Ps-Gradua@o em Engenharia Mécaca, Universidade Federal do Rio Grande do Sul,
90050-170 Porto Alegre, RS, Brazil

C. E. Siewert
Mathematics Department, North Carolina State University, Raleigh, North Carolina 27695-8205

(Received 3 April 2001; accepted 14 August 2p01

An analytical version of the discrete-ordinates method is used here in the field of rarefied-gas
dynamics to solve a version of the temperature-jump problem that is based on a linearized, variable
collision frequency model of the Boltzmann equation. In addition to a complete development of the
discrete-ordinates method for the application considered, the computational algorithm is
implemented to yield accurate numerical results for three specific cases: the classical BGK model,
the Williams model(the collision frequency is proportional to the magnitude of the velpcipd

the rigid-sphere model. @002 American Institute of Physic§DOI: 10.1063/1.1416192

I. INTRODUCTION the variable collision frequency model was used to solve the
classical Kramers’ problerhand so in this work we extend

The state of a gas can be described mathematically by aur usé® of the discrete-ordinates methddto solve the
distribution function that satisfies the nonlinear Boltzmanntemperature-jump problemfor a general version of a lin-
equation~3 While, for example, Monte Carlo methods and earized, variable collision frequency model of the Boltzmann
computationally intensive iterative methods are ways of atequation. Here we base our notation on Williams' bdok;
tempting to extract some physical information from the non-however, the papers of Cercignanand Loyalka and
linear Boltzmann equation, another approach that can bEerzigef are the ones we consider to be the defining works
used when the density of particles is sma#lrefied-gas dy- on this subject of the variable collision frequency model. It
namicg is to approximate the nonlinear Boltzmann equationtherefore seems reasonable to refer to the general model
by a so-called model equatiérin recent years, we have seen equation used in this work as the CLF equation and to con-
an increased interest in the general area of rarefied-gas dgider the BGK model(constant collision frequengy the
namics essentially because of applications to small-scal@villiams model (the collision frequency is proportional to
problems (for example, as related to micro-machines andthe particle speed and the rigid-sphere model as special
high-speed disk drivgsvhere the Boltzmann equation or a cases that correspond to certain choices of the collision fre-
model equation is required in order to describe well gas-flonguency.
and heat-flow mechanisms. In this work, we take advantage To introduce the mathematical statement of the problem
of some recent mathematical and numerical improvements ito be solved, we follow Williamsand consider the defining
the discrete-ordinates method in order to establish a series bhlance equation to be
high-quality results for the temperature-jump problem as
based on a generalization of the standard BGK model. 9

Although the so-called BGK modintroduced by Bhat- cu - h(x,0)+V(c)h(x,c)
nagar, Gross, and Krook has been the focus of the vast ma-
jority of mathematical studies in the general area of rarefied- v 1 rom
gas dynamics, there exist numerous models that have been :f f f c’Ze*C'ZK(czc’)h(x,c’)dx’ du’ dc'.
used to try to improve on the simplest form of the BGK 0J-1Jo
model. One such approdtt!is based on the variable col- .y
lision frequency mode{sometimes referred to as the gener-
alized BGK model since it has been shoWmetter able to  Here
support some experimental observations. In a recent }fork

h(x,c)=h(x,c,u,x) 2
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II. QUANTITIES OF INTEREST

1
K(c:c')=-—V(c)V(c")[ yo+ y1C- €'+ y,(Cc®—
(cc) 4 (©V(Eyot 7 72 ©) While our problem is defined in terms of the basic un-

known h(x,c), we require only two elementary integrals of

12 __
x(c" )], ©® h(x,c). To be clear, we note that here we seek the tempera-
where ture and density perturbatidhdefined by
1 N(X) = — Ffl fhcze‘czh(xc Yy dy dc
Yo=y, (43 2] 1, Gy, x)dy du o
S (4b)  and
V2 2 * (1 27
v T(X)= =7 f f f c2e~*(c2—3/2)
0 377 Jo J-1Jo
Y2V (40
o4 T2 xh(x,c,u, x)dy du dc, 9)
and
or
_V2 2 © 1
"V, (4d) N(x)=F,2fo f_lcze‘czcﬁ(x,c,u)d,udc (10)
with and
_ |- n+24-c? 4 (=[(1 2
V,= fo V(c)c"2e " dc. 5) T(X):_"sw”f f c?e ¢ (c?—3/2) p(x,c,;u)du dc,
0J-1
(11

In addition,c is used, with dimensionless units, to denote the
magnitude of the particle velocity vectoy x=0 is the spa- where
tial variable that measurg@ dimensionless unijsthe dis- 1 (2
tance from the wally/(c) is the collision frequency, ang d(X,c, ;)= 2—f h(x,c,u,x)dy (12
and y are the two angular variables that define the direction mJo

(relative to the positivex axis) of the velocity. In addition to  js an azimuthal average. We can integrate Eds.and (6)
Eq. (1) we consider the boundary condition at the wall writ- gyer y to find

ten as
Jd
h(O,c,,u,X)—(l—a)h(O,C,—,u,X—I—w)—(Ih)(O):(?Ga) Cu dX.cu)+V(c)p(x.cou)
for ue(0,1], ce[0), andye[0,7] and f J ¢’ K c,uc’ , u")yp(x,c’,u)du' dc’,
h(0c,u,x)—(1-a)h(0c,— u,x—m)—(Zh)(0)=0 (13
(6b) for x>0, ue[—1,1] andce[0,»), and
for ue(0,1], ce[0°), and ye[m,27]. Here B(0C, 1)~ (1—a)b(0.c,— )
2a (= (L f2m —c'? ’ ror
(Ih)(O):?,fO fo fo C’ge h(O,C y T M X ) _4af f (OC /.L’),M’ er dC,:O, (14)
Xu'dy du'dc’ () for we(0,1] andce[0). Here

and ae(0,1] is the accommodation coefficient. Our basic ~ K(c,u:c’,u’)=3V(c)V(c')[ yo+ yicuc’ u’
unknown h(x,c) is the perturbation from an initial ) '

Maxwellian distribution that, due to the presence of the wall, tyac"w)(c - w)]. (19

is a component of the particle distribution function. Inregard  As Egs.(1) and(6) are homogeneous, we must specify a
to Egs.(6), we note that some fraction-lo of the particles  driving term for the temperature-jump problem. We do this
is reflected specularly and that the remaining fractiois  implicitly by requiring thath(x,c, u, &) diverge asx tends to
reflected diffusely. In other words, the wall acts somewhainfinity. More specifically, we impose the condition that the
like a mirror and at the same time appears to absorb some @mperature perturbation satisfies the Welander condftion
the particles and then re-emit them isotropically. Because

there is no loss or supply of particles due to the presence of |y —T(x)=K (16)
the wall, the boundary condition can be thought of as con-  x_... dX

servative. In addition to the boundary condition given by
Egs. (6), we note that, as will be discussed later, we must”
also impose a condition om(x,c) asx tends to infinity. V(c)=on(C), a7

whereK is considered specified. Now let
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whereo is a scale factor to be defined later and whg(e)

Barichello et al.

Finally to complete the definition of our problem, we rewrite

is a “shape factor” used to define the variable collision fre- Eq. (16) as

guency. We also introduce
T=0X (18a

and
Y(7.c,u)=¢(rlo,cop)

and rewrite our problem as

(18b)

J
Cu a—TY( 7,C,u)+ n(C)Y(7,C 1)

=fmfl c'2e " *F(c,p:c’, u)Y(r,c' u')dp' dc’,
0J-1 19
for >0, ue[—1,1] andce[0s°), and
Y(0c,u)=(1-a)Y(0c,—u)

w (1
—4af f c'3e”
0 0

for ue(0,1] andce[0,). Here

¢*y(0c',— u')p' du' dc’ =0, (20)

F(c,uic’,u')=3m(c)n(c")[ Bo+ Bicuc’ u'

+Ba(c?~w)(c'?~w)], (21
where
Bo= ! (229
o 7]2'
= 22b
B1 o (22b)
72 (220
M2Me™ 7Ma
and
w= 7 (220
72
with
ﬂn:f n(c)c”e‘czdc. (23
0
Now we let
T,(7)=T(7/o) and N, (7)=N(7/0), (24
and so we can write
2 © (1 2
N, (7)= F’?J’ J c?e ¢Y(r,c,u)du dc (25)
0J-1
and

4 (=1
T*(T):mfo Jllcze’cz(cz—3/2)Y(r,c,,u)d,u dc.
(26)

d K
lim T ()= (27)

At this point we note that
Zy(7,¢,u)=(c*~5/2)[ 7—cul n(c)] (28)

is a solution of Eq(19) that is linear in7, and so we choose

to decompose the required solution into a part that has the
desired behavior as tends to infinity and a part that is
bounded. We therefore write

K
Y(T,C,,LL):;[Z(T,C,/.L)‘f'za(T,C,/.L)] (29)

and find from Eqgs(25) and (26), after using Eqs(28) and
(29), results for the density and temperature perturbations
expressed in terms of the bounded componéfi,c,u),
viz.
N 2
T W

Ny (7)=(K/0o)

(30

o (1
X j f c?e Z(7,c,u)dp dc
0 J-1

and

4 (= (1
T, (7)=(Klo) r+mfo f_lcze—Cz(c2—3/2)

XZ(7,c,u)dudcl. (3D

It follows now that we seek a solutiod(r,c,u) that is
bounded as tends to infinity and that satisfies

F
CMa—TZ(T,C,MH n(c)Z(7,Cc,u)

o 1 ,
:f f c'2e¢ ZF(C,,LL:C,,,LL')Z(T,C,,,LL,)d,LL,dC,,
0 -1

(32
for >0, ue[—1,1] andce[0), and
Z(0c,u)—(1—a)Z(0,c,— u)

—4aJ' f 3¢ ZOC ,—u ' du' dc’

=R(c,un), (33
for ue(0,1] andce[0,%). Here

4o
R(c,u)=(2—a)(c? —5/2)—+—F (34)
7(C)

where

_[” c* —c? 2

F—fo n(c)e (cc—5/2)dc. (35
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Our basic statement of the problem to be solved is now conwhere

plete, and so we proceed with our solution; however, before €]

making use of our version of the discrete-ordinates method, . M, if 7(©)é <1 (40)
we introduce some elementary transformations that will fa- ¢

cilitate the development of the final results.

Ill. BASIC TRANSFORMATIONS

Rather than deal explicitly with Eq$32) and (33), we
choose to follow Busbriddé and to introduce the convenient
change of variables

_ o

50 (363
and

vy=sugdc/n(c)}. (36b)

And so now if we go back to Eq32) and introduce the
decomposition

Z[7,c,En(c)/c]=Gy(7,8) + En(c)Gy(T.§)

+(c*— w)Gy(7,€) (37)
we find, after an interchange of orders of integration,

Jd Y
§EGi(Ta§)+Gi(71§)= f_y[llfi,l(g')Gl(Tf’)

+ i o §)Ga(7,€")

+i(§)Gs(7,E)]dE" (39
for i=1,2,3. Here
)= f ce *72(c)dc, (393
Mg
nde)=" f ce *7(c)dc, (39b)
Mg
’pl,a‘(f):%J ce™“2(c)(c? - w)dc, (399
Mg
)= f ce ' n(c)dc, (399
Mg
2
b= f ce *n*(c)dc, (399
My
¢2,3(§)=B—1§f ce™“73(c)(c?- w)dc, (399
2 Jwm,
pa6)= 22 f ce * 7(c)(c*~ w)dc, (399
Mg
vod)="2 f ce <7 (c)(c? - w)de (39h)
Mg
and
rd =" f ce " 72(c)(c* - w)dc, (390
M

&

In regard to boundary conditions, we substitute E7) into
Eq. (33) to obtain

G1(0,6) — (1= a)Gy(0,—§)—A

4o
—I'+(2—a)(w—5/2)¢,

=3 (413
G2(0£)+(1-a)Gy(0,~£) =0, (41b)
and

G3(04)—(1—a)G3(0,—§)=(2—a)é (419

for £e(0,y]. Here the diffuse term in Eq419 is given by

8a (7
A:—f [411(6)G1(0,— &) — ¢h1 A£)G2(0,— &)
Bo Jo

9148 G3(0,— §)]4d¢. (42)

We now introduce the vector-valued functi@ir,£), with
componentss;(r,£), i=1,2,3, and write Eq(38) as

J
£5-0(r6+6(r6)= || werernede, @y

where the X3 matrix W(¢§) has components; j(£). To
have our boundary conditions in vector form, we rewrite
Egs.(41) as

G(0,6) —(1—)SG(0,~ §)

-2 V(&G0 )¢ dE =R(® (44)
for £(0,y]. Here
S=diag1,~ 1,1, (45)
(&) — i AE) P8
Y(§)=,8— 0 0 0 (46)
°l o 0 0
and
(2—a)(w—5/12) &+ (413) al’
R(&)= 0 (47)
(2—a)é

And so we seek a bounddds 7—) solution of Eq.(43)
that satisfies Eq44). Of course, once we have solved Be
problem, we can use E¢37) to rewrite Eqs(30) and(31) as

1 Y
N*(T)I(K/U)[—ﬁ;/zf [n1(&)G1(T7,€)
-y

+N2(§)Go(7,6) + n3(§)G3(r,§)]d§+ (48)

and
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2 Y
T*(T)Z(K/U){ T+ mf [t11(8)Gq(T,€)
-

+t2(§)G2(r,§)+t3(§)G3(¢,§)]d§], (49

where
_ A2
n1(§)=2J’M ce ¢ p(c)dc, (509
3
n2(§)=2§fM ce *72(c)dc, (50b)
&
and
_ —c2 2
ns(f)—ZfM ce ° g(c)(cc—w)dc, (500
3
and also where
t1(§)=2JM ce 7(c)(c2—3/2)dc, (518
&
tz(g)zzng ce ¢ p2(c)(c2—3/2)dc, (51b
13

and

t3(§)=2fM ce “y(c)(c®— w)(c2—3/2)dc. (510
3

Barichello et al.

range” quadrature scheme that we partially attribute the es-
pecially good accuracy we have obtained from the solution
reported here. Continuing, we substitute

G(r,x&)=®(v,x&)e " (54)
into Eqgs.(53) to find

N
(VFEBP(v, £ &)= vgl W[ V(&) DP(v, &)

FW(— E)B(v,~ £)] (55)
fori=1,2,..N. Now let
D, (v)=[®(r,&) @ (r,&) - P(r,EY], (568
O_(1)=[®T(r,— &) ®N(r,—&) - P(v,—EY],
(56b)
and
M =diag &1, &,... &1}, (57)

wherel is the 3x3 identity matrix. In addition we leWV
andW _ denote 3 X 3N matrices each 8 3N row of which
is, respectively,

Ry=[w;W(£)
and

R_=[w,W(—§)

woW (&) wyW(én)] (38

wo,W(—¢,) WP (— &) ]

(59

It is clear that the scale facterwill have a fundamental
effect on our reported numerical results, and since there afo that we can write Eq$55) as
ready e.:x.igt various possibilities in the literature concerning v, (1) —M®, (1) =1 [W. D, (1) +W_ & ()]
the definition of an appropriate mean-free path, we elect here (609
to use one of Loyalka’s choicg$or scaling our results. We
therefore define and

16

o= 6‘:1_57771/40 7 Yc)c*e S (c2—5/22dc (52

v®_ (v)+MP®_(v)=y[W,. D, (v)+W_D_(v)].
(60b)

At this point we find, after noting some basic properties of

for all models we consider. As noted by Loyafkéhe use of W(Z), that we can write

o=¢; corresponds to measuring our spatial variakl@
terms of a mean-free path that is defined in terms of the
thermal conductivity.

W_=DW,D, (61
where the BIX 3N diagonal matrixD can be written as
D=diadgSS,...,S} (62

with Sas given by Eq(45). We now multiply Eq.(60b) by D
and rewrite Eqs(60) as

v® (v)-M®P, (v)=v[W,P (v)+DW DD _(v)]
(639

IV. THE DISCRETE-ORDINATES SOLUTION

We note first of all that the characteristic matd&( &), as
defined by Eqs(39), is not symmetric. We note also that
W(H#W(—§), and so we write our discrete-ordinates ver-
sion of Eq.(43) as

and

d
ifid—TG(T,ifi)+G(T-i§i)
vD®_(v)+MD®_(v)=v[DW, D (v)+W DP_(v)].
N (63b)
Zgl W W(&)G(7,6) +W(=E)G(T,—&)] (53

Now let
fori=1,2,...N. In writing Egs.(53) as we have, we clearly U=, (v)+DP_(v) (643
are considering that the quadrature point$é,} and theN
weights{w,} are defined for use on the integration interval
[0,y]. We note that it is to this feature of using a “half- V=®_ (v)-D®P_(v) (64b)
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and add Eqs(63) to obtain
1= (1+D)W,JU=MV, (65)

where nowl is the NX 3N identity matrix. We also com-

pute the difference between Ed63) to find
V[I—(1-D)W_ ]V=MU. (66)

We now can eliminat&/(v) between Eqs(65) and (66) to
find the eigenvalue problem

AU=2\U, (67)
where\ = 1/v? and
A=M"Y{I-=(I-D)W M {I—(I1+D)W,]. (69)

And so our first computational job is to find théN3eigen-

values ofA. However we first wish to address the issue o

infinite values of the separation constantor equivalently,
the eigenvalues oA that approach zero ds tends to infin-
ity). We first introduce

§

A(2) —I+zf lI’(§) (699

and note that we consid&(z) to be the exact version of the
discrete-ordinates quantity

N

(z)—I+zZ w,| ¥

(&) 7——=—Y(—&)

g §+z

(69b)
Since we know that the separation constantsiefined by

the zeros of def)(z) are the same as those we compute from

the eigenvalues of the matriR, we base our discussion
about the eigenvalues @& (that accumulate at zero a¢
tends to infinity on the zeros of dek(z) asztends to infin-
ity. We find that

M
detA(z)~ & M=#0, (70
asz—, and so we conclude that, aktends to infinity,A

should haven=0 as a(two-fold) repeated eigenvalue. And

so instead of using E@54) for the two smallest eigenvalues
of A we use instead the following four exact solutions o

Eq. (43):
o
G,=|0 (713
L 1]
and
o
G,=|1 (71b)
L O]
along with
R
Gs=|0 (719
L O]
and

Temperature-jump problem 387
w—5/2
Guré)=(r—¢)| O (71d
1
If we now let
Gi(T):[GT(T!tgl) GT(T!i§2) GT(T!igN)]Ti

(72

then our discrete-ordinates solution can be wriitafter we
exclude all solutions that are not boundedrtends to in-
finity) as

3N
Gi(T):Al‘I)1+A2(I)2+ Bl(l)3+ Z Aj(I)i(Vj)e_T/Vj,
i=3
(73)
fwhereB; andA;, for j=1,2,..,3, are arbitrary constants.
In addition
=[G Gf G, j=1.23, (74)

and thed®. (v;) are available from Eqg64), (65), and(66).
We find

D (v)=3{1+v;M 1= (I+D)W, ]}V, (75

and
@ (v))=3D{l- M {I-(1+D)W, }U;, (76)

where U; is the eigenvector ofA that corresponds to the
eigenvalue\;. Looking back now to Eq(44), we find, for
this formulation, that the boundary condition can be written
as

G (0)—(1-a)RG_(0)—2aR4G_(0)=R (77
where the known right-hand side is given by
R=[R7(&) R'(&) RT(&)]™ (78)

Note thatR(¢) is given by Eq.(47). In addition, we find we
can write the specular matrix as

R.=diags,S,....S}, (79

whereSis given by Eq.(45). Finally, to account for diffuse
reflection,Ry is a 3NX 3N matrix each 3< 3N row of which

¢is given by

Ri=[w1&1Y(E1)  026,Y(E2) onéENY (En) ]

(80
whereY (¢) is given by Eq.(46). It is clear that Eq(77) is a
general result, but when the exact terdps, ®,, and®; are
used in Eq.(44) the integrals resulting from the diffuse re-
flection can be done exactly. Finally, we note that sidee
satisfies the homogeneous version of E&j/) the constant
B, cannot be determined from that equation. However, we
can impose on our solution the additiofatbitrary) normal-
ization condition

IM[N, (D) + T (n]=T,

T—®

(81

At this point, we follow other works**®%and usel', =0
which, when we consider Eq&18), (49), and(73), yields

B,=(w—5/2)A,. (82
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Considering now the quantities we wish to evaluate, wewvhere we have imposed the normalizatids 1. If now we
substitute Eq(73) into Egs.(48) and(49) to find, after using let
Eq. (82),

aN Tasy(x) =xX+A /o (89)

1
N*(T)=(K/U)[—T—A1+—mz AN, @ (7)) _ _ o
=3 and define the temperature-jump coefficiérty

+N_(I)_(Vj)]e_7/"1} (83 d
Tasy(o): gd_XTaS)(X”x:Oa (90)
and
then clearly
3N
T, (7)=(Klo){ 7+ A+ 2 > AT @, (v)
« (T 1 377172j:3 L+ LV (=A,lo. (92)
+T_®_(vj)]e” T’”J] , (84)  To be very clear, we note that the constigtintroduced in
Eq. (81) does not affect the temperature-jump coefficient or

the temperature perturbatidr{x). In fact, another choice of
where I', would change only the density perturbatiowéx) by the
addition of a constant factor.

No=[wiN(£&)  WoN(EE) - WyN(£EW)]
(853
and
V. SPECIAL CASES
T.=[w,T(=* T(=x T(x . .
=W T(=6) woT(=6) W §N)(]85b) Having developed our general solution to the
temperature-jump problem for the CLF model of the linear-
with ized Boltzmann equation, we are ready to list the specific
forms of certain basic quantities for the three special cases
we consider in this work.
N(§=[ny(§) na(&) n3(§)] (863
A. Constant collision frequency
and For this case, the classical BGK model, we write
T(H)=[t(§) (&) t3(&)]. (86b)

n(c)=1, (92

Note that the components of the vectors introduced in
Eqgs.(86) are defined by Eq$50) and(51). We note also that and so we find
in obtaining Eqs(83) and (84) from Eqs.(48) and(49), we
have analytically integrated the first three terms of &®),

but we have used our defined quadrature scheme to integrate Y= (933
the remaining terms. Now putting Eq83) and(84) back in
terms of thex variable, we find r=o, (93b)
1 3N
NGO = —x=Ar/ot —1p % AN, @ (1) w=3/2, (939
i=3
+N_@_(v)]e” ™" (87 Bo=4lm2 (930
and and
2 3N
T(X)=X+Ay/0+ 715 2, AT @ (v)) o=1. (93¢
3om° =3

+T_®_(vj)]e” ™, (88)  In addition, we find from Eqs(39)
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g - 3 £-112
e
(&)= 2¢ 2¢2 26(82-112)  |. (94)

(213)(&2—112)  (213)&(£2—112)

We can also use Eq&0) and(51) to write Eqs.(86), for this
case, as

N(H=e €11 ¢ £-1/2]

and

(953

T(§)=e E[2-12 &&—12) & —2+5/4].

(95b)

B. The Williams model
For this case we write
n(c)=c, (96)

and so we find

r=1 (973
'=-1/4, (97b)
w=2, (979
Bo=2, (97d
and
o=(6/5)7 2 (979
In addition, we find from Eqs(39)
1 (314 w2 0
W(é)= % (9/8) % 3¢ (9/16) w12 | .
0 (3/16) Y% 1
(98)

Again we can use Eq$50) and(51) to write Eqgs.(86), for
this case, as

N(&=[(1/27"? ¢
and

T(6)=[0 ¢&/2

—(1/4) 7*2] (993

(3/4)w72. (99b)

C. The rigid-sphere model

(213)(&*— £2+ 5/4)

and we have used the software packageLE v to find the
numerical values

Bo=0.7978845608029, (1010

I'=—-0.06063367084623, (1019
and

0=0.2753345876233. (101e

In regard to Egs(39), (50), and(51), we have used numeri-
cal methods to evaluate the various functions required to
establishW(§), N(§), and T(£). As discussed in a previous
work'? concerning Kramers’ problem, we let

foy)= S
©= n(c)

and note that we can show, for the considered case, that
f’(c)>0, forc=0 and so the inverse function

m(&)=t"Y(&), Eel—n7], (103

exists, and thus we can write the required functiomstten
symbolically a$

(102

P(§)=fM p(c)dc (104
&

as

P(£)= f:@p(c)dc, (108

which can be evaluated numerically onogé) is available;
as beforé” we use Newton’s method to establish the required
numerical values om(¢).

VI. NUMERICAL RESULTS

The first thing we must do is to define the quadrature
scheme to be used in our discrete-ordinates solution, and,
since we have considered three different cases, to which we
refer as case 1, case 2, and case 3 while meaning, respec-
tively, the BGK model, the Williams model, and the rigid-
sphere model, we have used three different maps. For case 1,

For the rigid-sphere model, we follow Loyalka and we used thénonlineay transformation

Hickey!'! and write

u(é)=exp{— ¢} (106)

to mapée[0,°) into ue[0,1], and we then used the Gauss—
Legendre scheme mappéihearly) onto the interval0,1].

where erf€) is the error function. Here we find the exact For cases 2 and 3 we simply mapped the Gauss-Legendre

1 77_1/2 )
n(c)=|2c+ E)Terf(cﬂ—e‘c , (100
results
y=1m? (1013
and
w=TI4, (101b

scheme onto, respectively, the intervgdsl] and[ 0,7 ¥?].
Having defined our quadrature scheme, we used the driver
program RG from theispack collectiorf’ to find the eigen-
values and eigenvectors defined by E7). And so, after
using the subroutinesGECO and DGESL from the LINPACK
packagé! to solve the linear system derived from E@7) to
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TABLE I|. The temperature-jump coefficieit

Model a=0.1 a=0.3 a=0.5 «=0.6 a=0.7 «=0.9 a=1.0

Case 1 21.45012 6.630514 3.629125 2.867615 2.317534 1.570264 1.302716
Case 2 21.19359 6.406417 3.435960 2.689383 2.153897 1.434848 1.180947
Case 3 21.24657 6.452894 3.476180 2.726563 2.188095 1.463247 1.206526

find the constantg; , for j=1,2,...,.3\, we consider our so- solved as three consecutive scalar problems. This approach
lution complete. Finally, but importantly, we have found, thathas been used by Baftzo confirm all of the results given in
some elements of the matrix-valued functitié) as defined Tables | and Il that refer to case 2.
by Egs.(39) can be essentially zerdrom a computational We have typically usetl=50 to generate results for the
point-of-view). In such cases, we found that by defining antemperature-jump coefficieftand the temperature and den-
element to be precisely zero when that element is less thasity perturbations good to, say, five or six significant figures,
say,e=10"%9 we greatly increased the ability of the linear- and so we note that oWORTRAN implementatior(no special
algebra package to yield the required number of independemffort was made to make the code especially effigiehbur
eigenvectors when there is(aearly repeated eigenvalue.  discrete-ordinates solutiofwith N=50) runs in a few sec-

To complete our work we list in Tables | and Il some onds on a 400 MHz Pentium-based PC.
results obtained from OUFORTRAN implementation of the To have some idea of the merits of the CLF model, as we
developed solution of the temperature-jump problem for théhave used it here, we note that Loyalkand Sone, Ohwada,
three explicitly considered cases. We note that our results amnd Aoki® give, respectively, for the case=1, the results
given with what we believe to be seven, in Table |, and six,(=1.2486 and{=1.2482 for the case of the linearized
in Table Il, figures of accuracy. While we have no proof of Boltzmann equation relevant to hard-sphere collisions. If we
the accuracy achieved in this work, we have done someonsider these results to be the best available for the problem
things to support the confidence we have. First of all ouras defined in this work, then our use of the CLF model for
results for case 1 agree perfectly with sofgaas) indepen-  the rigid-sphere cas&=1.20652¢ provides a modest im-
dent calculation’$ done previously. In addition we found provementin regard to the temperature-jump coefficient for
agreement, to three figures, with the valuel/dbr case 2, the casex=1) over the classical BGK modél=1.302716.
with a=1.0, that was reported by Cassell and WilliafAsVve
also found apparent convergence in our numerical results a5,
we increasedN, the number of quadrature points used, andto”
reduce the possibility oFORTRAN errors, we have imple- In concluding this work, we note that we have been able
mented two independent versions of the algorithm. Finallyto extend the use of our analytical version of the discrete-
we note that for case 2, the Williams model, the three-vectoordinates method to solve the temperature-jump problem for
G problem can, as discussed by Williams and Cag8déle  a general version of the variable collision frequency model.

FINAL COMMENTS

TABLE II. The temperature and density perturbations for the easé.5.

Case 1 Case 2 Case 3
X T(x) N(x) T(x) N(x) T(x) N(x)
0.0 2.91597 —-3.07437 3.10167 —3.27399 3.00508 —3.16704
0.1 3.18042 —3.31664 3.30560 —3.42542 3.23434 —3.35822
0.2 3.36278 —3.48323 3.45447 —3.54940 3.39748 —3.50093
0.3 3.52167 —3.62947 3.58758 —3.66556 3.54146 —3.63010
0.4 3.66754 —3.76478 3.71209 —3.77746 3.67483 —3.75193
0.5 3.80489 —3.89310 3.83110 —3.88665 3.80132 —3.86906
0.6 3.93615 —4.01653 3.94628 —3.99397 3.92295 —3.98291
0.7 4.06283 —4.13633 4.05866 —4.09990 4.04097 —4.09435
0.8 4.18593 —4.25334 4.16891 —4.20480 4.15620 —4.20394
0.9 4.30614 —4.36814 4.27749 —4.30888 4.26921 —4.31208
1.0 4.42400 —4.48113 4.38475 —4.41233 4.38044 —4.41906
2.0 5.52928 —5.55674 5.42014 —5.42888 5.44006 —5.45530
3.0 6.57466 —6.58912 6.43030 —6.43349 6.46062 —6.46735
4.0 7.59758 —7.60560 7.43378 —7.43503 7.46901 —7.47216
5.0 8.61013 —8.61476 8.43508 —8.43559 8.47273 —8.47426
6.0 9.61737 —9.62011 9.43559 —9.43581 9.47447 —9.47523
7.0 10.6217 —10.6234 10.4358 —10.4359 10.4753 —10.4757
8.0 11.6243 —11.6254 11.4359 —11.4359 11.4757 —11.4759
9.0 12.6260 —12.6267 12.4359 —12.4359 12.4759 —12.4761
10.0 13.6271 —13.6275 13.4359 —13.4360 13.4761 —13.4761

20.0 23.6291 —23.6291 23.4360 —23.4360 23.4762 —23.4762
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