2,216 research outputs found
Benthic biomass size spectra in shelf and deep-sea sediments
The biomass distributions of marine benthic metazoans (meio- to macro-fauna, 1 ?g–32 mg wet weight) across three contrasting sites were investigated to test the hypothesis that allometry can consistently explain observed trends in biomass spectra. Biomass (and abundance) size spectra were determined from observations made at the Faroe–Shetland Channel (FSC) in the Northeast Atlantic (water depth 1600 m), the Fladen Ground (FG) in the North Sea (150 m), and the hypoxic Oman Margin (OM) in the Arabian Sea (500 m). Observed biomass increased with body size as a power law at FG (scaling exponent, b = 0.16) and FSC (b = 0.32), but less convincingly at OM (b = 0.12 but not significantly different from 0). A simple model was constructed to represent the same 16 metazoan size classes used for the observed spectra, all reliant on a common detrital food pool, and allowing the three key processes of ingestion, respiration and mortality to scale with body size. A micro-genetic algorithm was used to fit the model to observations at the sites. The model accurately reproduces the observed scaling without needing to include the effects of local influences such as hypoxia. Our results suggest that the size-scaling of mortality and ingestion are dominant factors determining the distribution of biomass across the meio- to macrofaunal size range in contrasting marine sediment communities. Both the observations and the model results are broadly in agreement with the "metabolic theory of ecology" in predicting a quarter power scaling of biomass across geometric body size classes
The quantitative soil pit method for measuring belowground carbon and nitrogen stocks
Many important questions in ecosystem science require estimates of stocks of soil C and nutrients. Quantitative soil pits provide direct measurements of total soil mass and elemental content in depth-based samples representative of large volumes, bypassing potential errors associated with independently measuring soil bulk density, rock volume, and elemental concentrations. The method also allows relatively unbiased sampling of other belowground C and nutrient stocks, including roots, coarse organic fragments, and rocks. We present a comprehensive methodology for sampling these pools with quantitative pits and assess their accuracy, precision, effort, and sampling intensity as compared to other methods. At 14 forested sites in New Hampshire, nonsoil belowground pools (which other methods may omit, double-count, or undercount) accounted for upward of 25% of total belowground C and N stocks: coarse material accounted for 4 and 1% of C and N in the O horizon; roots were 11 and 4% of C and N in the O horizon and 10 and 3% of C and N in the B horizon; and soil adhering to rocks represented 5% of total B-horizon C and N. The top 50 cm of the C horizon contained the equivalent of 17% of B-horizon carbon and N. Sampling procedures should be carefully designed to avoid treating these important pools inconsistently. Quantitative soil pits have fewer sources of systematic error than coring methods; the main disadvantage is that because they are time-consuming and create a larger zone of disturbance, fewer observations can be made than with cores
Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary
This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary
On different tracks: Institutions and railway regulation in Britain and Germany.
This study analyses how institutional factors impact on processes of isomorphism in the design of regulatory regimes. It does so through a comparative examination of regulatory reform in the railway domain in Britain and Germany in three time periods, the post-First World War and the post-Second World War periods as well as the 1990s. It is argued that pressures for isomorphism, defined as the increasing homogenisation of a unit with other units in its policy environment, are exerted by several policy environments. These pressures can be distinguished in their degree of domain- and paradigm-orientation. Domain-orientation consists of regulatory change which is based on sector-specific sources, whereas paradigm-orientation involves the application of supposedly universal 'policy recipes' across policy domains. The study questions whether three institutional factors - the insulation of the regulatory space from coercive pressures, the insulation of the political-administrative nexus in the regulatory space and the insulation of the regulatory space from societal forces - can explain why in some cases reforms are domain-oriented, but, in other cases, reforms are paradigm-oriented. The comparative analysis of reform in British and German railway regulation provides three conclusions. First, in all cases, pressures for isomorphism emerging from different policy environments provided competing 'templates' for regulatory design ideas. Second, among the institutional factors, the insulation of the political-administrative nexus in the regulatory space was identified as the most important factor for explaining the orientation of the selected regulatory instruments. Third, in the light of the study's historical and institutional perspective, this thesis critically evaluates arguments proclaiming the emergence of a 'regulatory state' in contemporary Europe
Complete Analysis of Baryon Magnetic Moments in 1/N_c
We generate a complete basis of magnetic moment operators for the N_c = 3
ground-state baryons in the 1/N_c expansion, and compute and tabulate all
associated matrix elements. We then compare to previous results derived in the
literature and predict additional relations among baryon magnetic moments
holding to subleading order in 1/N_c and flavor SU(3) breaking. Finally, we
predict all unknown diagonal and transition magnetic moments to <= 0.15 mu_N
accuracy, and suggest possible experimental measurements to improve the
analysis even further.Comment: 28 pages (including 11 tables), ReVTeX. One reference and grant
acknowledgment adde
Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms
This paper describes a new 2D model for the photospheric evolution of the
magnetic carpet. It is the first in a series of papers working towards
constructing a realistic 3D non-potential model for the interaction of
small-scale solar magnetic fields. In the model, the basic evolution of the
magnetic elements is governed by a supergranular flow profile. In addition,
magnetic elements may evolve through the processes of emergence, cancellation,
coalescence and fragmentation. Model parameters for the emergence of bipoles
are based upon the results of observational studies. Using this model, several
simulations are considered, where the range of flux with which bipoles may
emerge is varied. In all cases the model quickly reaches a steady state where
the rates of emergence and cancellation balance. Analysis of the resulting
magnetic field shows that we reproduce observed quantities such as the flux
distribution, mean field, cancellation rates, photospheric recycle time and a
magnetic network. As expected, the simulation matches observations more closely
when a larger, and consequently more realistic, range of emerging flux values
is allowed (4e16 - 1e19 Mx). The model best reproduces the current observed
properties of the magnetic carpet when we take the minimum absolute flux for
emerging bipoles to be 4e16 Mx. In future, this 2D model will be used as an
evolving photospheric boundary condition for 3D non-potential modeling.Comment: 33 pages, 16 figures, 5 gif movies included: movies may be viewed at
http://www-solar.mcs.st-and.ac.uk/~karen/movies_paper1
Experimental and simulation study on heat transfer in fluidized beds with heat production: An integrated DIA/PIV/IR technique and CFD-DEM
As a result of highly exothermic reactions taking place in gas-phase olefin polymerization fluidized bed reactors, difficulties concerning the heat management play an important role in the optimization of these reactors. To get a better understanding of the particle temperature distribution in fluidized beds, a high speed infrared (IR) camera and a visual camera have been coupled to obtain the hydrodynamics and thermal aspects of a pseudo-2D fluidized bed (1), as shown in figure 1. The hydrodynamics are characterized by digital image analysis and particle image velocimetry (DIA/PIV) and the heat properties by IR. The experimental data is used to validate an in-house developed computational fluid dynamics and discrete element model (CFD-DEM). In order to mimic the heat effect due to the exothermic polymerization reaction in the pseudo-2D fluidized bed reactor, a model system was used. In this model system, heat is released in zeolite 13X particles (1.8~2.0 mm) due the adsorption of CO2. Characteristics of the adsorption kinetics, isotherm and reaction enthalpy have been achieved by performing Thermogravimetric Analysis (TGA) and Simultaneous Thermal Analysis (STA). By feeding gas mixtures of CO2 and N2 uniformly to the reactor, the rate of adsorption can be controlled in order to obtain a pseudo-steady state of heat production in the bed. The combined technique provides insightful information on the particle temperature distribution for different CO2 concentrations, bed aspect ratios and background superficial velocities. Furthermore, the comparison of the spatial and temporal distribution of the particle temperature distribution in fluidized beds with the simulation results of CFD-DEM provides qualitative and quantitative validation of the CFD-DEM, in particular concerning the thermal aspects.
Please click Additional Files below to see the full abstract
Renormalization group parameter evolution of the minimal supersymmetric standard model with R-parity violation
A comparison of spectra obtained using the 1-loop MSSM and 2-loop R-parity
violating MSSM renormalization group equations is presented. Influence of
higher loop corrections and R-parity violating terms is discussed. Some
numerical constraints on the R-parity violating parameters are also given.Comment: 4 pages, 1 figure, using RevTE
- …