845 research outputs found

    Berg adder (Bitis atropos): An unusual case of acute poisoning

    Get PDF
    A 5-year-old boy presented to hospital with mild local cytotoxic and severe neurotoxic symptoms. The neurotoxic symptoms included ptosis, fixed dilated pupils and flaccid paralysis with respiratory failure. Mild hyponatraemia was also a clinical feature. After various unsuccessful treatment options were followed, the Tygerberg Poison Information Centre was contacted and a diagnosis of berg adder bite was made. Berg adder bites are uncommon and therefore not usually considered in the differential diagnosis of a patient presenting with an unexplained clinical picture. A timeous poison information helpline consultation is recommended in this situation

    Application of conventional and real-time fluorescent ITS1 rDNA PCR for detection of Besnoitia besnoiti infections in bovine skin biopsies

    Get PDF
    Besnoitia besnoiti, an apicomplexan protozoan parasite, is the causative agent of bovine besnoitiosis. This infection may dramatically affect body condition, and, in males, lead to irreversible infertility. While identification of clinical cases and their histopathological confirmation is relatively simple to carry out, finding subclinical forms of infection is more difficult, thus a more sensitive test for the identification of the etiological agent may be an appropriate diagnostic tool. We have developed the ITS1 rDNA-sequence-based conventional and real-time PCR which are highly sensitive and specific for the detection of B. besnoiti infection in cattle. A recombinant internal positive control was introduced to assess possible sample-related inhibitory effects during the amplification reaction and, in order to prevent false-positive results, a pre-PCR treatment of potentially contaminating dU-containing PCR product with uracyl-DNA-glycosylase (UDG) was followed. # 2007 Elsevier B.V. All rights reserved

    Sequential Combination Therapy Leading to Sustained Remission in a Patient with SAPHO Syndrome

    Get PDF
    The SAPHO syndrome represents a variety of clinically similar disorders with the key features of hyperostotic bone lesions in combination with chronic pustular skin disease. The respective pathophysiology of bone and joint manifestations in SAPHO syndrome is still a matter of discussion. For example it does not appear to represent reactive arthritis and HLA B27 antigen, with the latter being typically present in patients with spondyloarthopathies. Treatment of SAPHO syndrome is also not well established and consists of various antiinflammatory and antirheumatic drugs. Here, we report a female patient with active SAPHO syndrome suffering from sternal swelling of unknown origin that had been known for 10 years and a 4-year-history of severe lower back pain. Remarkable were also a typical pustulous palmar erythema associated with swelling and decreased motility of both MCP-I joints. Inflammation parameters were high with an ESR 68 mm/1st hour and a CRP of 19.6 mg/l. She was initially treated with rofecoxib and doxycycline, followed by sulfasalazine with only partial clinical response. Thereafter, both articular symptoms as well as cutaneous lesions responded well to a combination therapy with methotrexate and sulfasalazine. Thus, the case illustrates nicely that methotrexate in combination with another DMARD can be successfully applied to patients with long-term active SAPHO syndrome

    A new photon recoil experiment: towards a determination of the fine structure constant

    Get PDF
    We report on progress towards a measurement of the fine structure constant to an accuracy of 5×10105\times 10^{-10} or better by measuring the ratio of the Planck constant to the mass of the cesium atom. Compared to similar experiments, ours is improved in three significant ways: (i) simultaneous conjugate interferometers, (ii) multi-photon Bragg diffraction between same internal states, and (iii) an about 1000 fold reduction of laser phase noise to -138 dBc/Hz. Combining that with a new method to simultaneously stabilize the phases of four frequencies, we achieve 0.2 mrad effective phase noise at the location of the atoms. In addition, we use active stabilization to suppress systematic effects due to beam misalignment.Comment: 12 pages, 9 figure

    International Union of Basic and Clinical Pharmacology. CXII: adenosine receptors: a further update

    Get PDF
    Our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors (2011) contained a number of emerging developments with respect to this G protein-coupled receptor subfamily, including protein structure, protein oligomerization, protein diversity, and allosteric modulation by small molecules. Since then, a wealth of new data and results has been added, allowing us to explore novel concepts such as target binding kinetics and biased signaling of adenosine receptors, to examine a multitude of receptor structures and novel ligands, to gauge new pharmacology, and to evaluate clinical trials with adenosine receptor ligands. This review should therefore be considered a further update of our previous reports from 2001 and 2011.Significance Statement-Adenosine receptors (ARs) are of continuing interest for future treatment of chronic and acute disease conditions, including inflammatory diseases, neurodegenerative afflictions, and cancer. The design of AR agonists ("biased" or not) and antagonists is largely structure based now, thanks to the tremendous progress in AR structural biology. The A2A and A2BAR appear to modulate the immune response in tumor biology. Many clinical trials for this indication are ongoing, whereas an A2AAR antagonist (istradefylline) has been approved as an anti-Parkinson agent.Medicinal Chemistr

    Process and Data: Two Sides of the Same Coin

    Get PDF
    Companies increasingly adopt process management technology which offers promising perspectives for realizing flexible information systems. However, there still exist numerous process scenarios not adequately covered by contemporary information systems. One major reason for this deficiency is the insufficient understanding of the inherent relationships existing between business processes on one side and business data on the other. Consequently, these two perspectives are not well integrated in many existing process management systems. This paper emphasizes the need for both object- and process-awareness in future information systems, and illustrates it along several examples. Especially, the relation between these two fundamental perspectives will be discussed, and the role of business objects and data as drivers for both process modeling and process enactment be emphasized. In general, any business process support should consider object behavior as well as object interactions, and therefore be based on two levels of granularity. In addition, data-driven process execution and integrated user access to processes and data are needed. Besides giving insights into these fundamental characteristics, an advanced framework supporting them in an integrated manner will be presented and its application to real-world process scenarios be shown. Overall, a holistic and generic framework integrating processes, data, and users will contribute to overcome many of the limitations of existing process management technology

    Solving analytic differential equations in polynomial time over unbounded domains

    Get PDF
    In this paper we consider the computational complexity of solving initial-value problems de ned with analytic ordinary diferential equations (ODEs) over unbounded domains of Rn and Cn, under the Computable Analysis setting. We show that the solution can be computed in polynomial time over its maximal interval of de nition, provided it satis es a very generous bound on its growth, and that the function admits an analytic extension to the complex plane

    Sublocalization, superlocalization, and violation of standard single parameter scaling in the Anderson model

    Full text link
    We discuss the localization behavior of localized electronic wave functions in the one- and two-dimensional tight-binding Anderson model with diagonal disorder. We find that the distributions of the local wave function amplitudes at fixed distances from the localization center are well approximated by log-normal fits which become exact at large distances. These fits are consistent with the standard single parameter scaling theory for the Anderson model in 1d, but they suggest that a second parameter is required to describe the scaling behavior of the amplitude fluctuations in 2d. From the log-normal distributions we calculate analytically the decay of the mean wave functions. For short distances from the localization center we find stretched exponential localization ("sublocalization") in both, 1d and 2d. In 1d, for large distances, the mean wave functions depend on the number of configurations N used in the averaging procedure and decay faster that exponentially ("superlocalization") converging to simple exponential behavior only in the asymptotic limit. In 2d, in contrast, the localization length increases logarithmically with the distance from the localization center and sublocalization occurs also in the second regime. The N-dependence of the mean wave functions is weak. The analytical result agrees remarkably well with the numerical calculations.Comment: 12 pages with 9 figures and 1 tabl

    Quantum dots in high magnetic fields: Rotating-Wigner-molecule versus composite-fermion approach

    Full text link
    Exact diagonalization results are reported for the lowest rotational band of N=6 electrons in strong magnetic fields in the range of high angular momenta 70 <= L <= 140 (covering the corresponding range of fractional filling factors 1/5 >= nu >= 1/9). A detailed comparison of energetic, spectral, and transport properties (specifically, magic angular momenta, radial electron densities, occupation number distributions, overlaps and total energies, and exponents of current-voltage power law) shows that the recently discovered rotating-electron-molecule wave functions [Phys. Rev. B 66, 115315 (2002)] provide a superior description compared to the composite-fermion/Jastrow-Laughlin ones.Comment: Extensive clarifications were added (see new footnotes) regarding the difference between the rotating Wigner molecule and the bulk Wigner crystal; also regarding the influence of an external confining potential. 12 pages. Revtex4 with 6 EPS figures and 5 tables . For related papers, see http://www.prism.gatech.edu/~ph274c

    Magnetic properties of the quantum spin-1/2 XX diamond chain: The Jordan-Wigner approach

    Full text link
    The Jordan-Wigner transformation is applied to study magnetic properties of the quantum spin-1/2 XXXX model on the diamond chain. Generally, the Hamiltonian of this quantum spin system can be represented in terms of spinless fermions in the presence of a gauge field and different gauge-invariant ways of assigning the spin-fermion transformation are considered. Additionally, we analyze general properties of a free-fermion chain, where all gauge terms are neglected and discuss their relevance for the quantum spin system. A consideration of interaction terms in the fermionic Hamiltonian rests upon the Hartree-Fock procedure after fixing the appropriate gauge. Finally, we discuss the magnetic properties of this quantum spin model at zero as well as non-zero temperatures and analyze the validity of the approximation used through a comparison with the results of the exact diagonalization method for finite (up to 36 spins) chains. Besides the m=1/3m=1/3 plateau the most prominent feature of the magnetization curve is a jump at intermediate field present for certain values of the frustrating vertical bond.Comment: 12 pages, 9 figures, accepted for publication in Eur. Phys. J.
    corecore