35 research outputs found

    Human VPS34 is required for internal vesicle formation within multivesicular endosomes

    Get PDF
    After internalization from the plasma membrane, activated EGF receptors (EGFRs) are delivered to multivesicular bodies (MVBs). Within MVBs, EGFRs are removed from the perimeter membrane to internal vesicles, thereby being sorted from transferrin receptors, which recycle back to the plasma membrane. The phosphatidylinositol (PI) 3â€Č-kinase inhibitor, wortmannin, inhibits internal vesicle formation within MVBs and causes EGFRs to remain in clusters on the perimeter membrane. Microinjection of isotype-specific inhibitory antibodies demonstrates that the PI 3â€Č-kinase required for internal vesicle formation is hVPS34. In the presence of wortmannin, EGFRs continue to be delivered to lysosomes, showing that their removal from the recycling pathway and their delivery to lysosomes does not depend on inward vesiculation. We showed previously that tyrosine kinase-negative EGFRs fail to accumulate on internal vesicles of MVBs but are recycled rather than delivered to lysosomes. Therefore, we conclude that selection of EGFRs for inclusion on internal vesicles requires tyrosine kinase but not PI 3â€Č-kinase activity, whereas vesicle formation requires PI 3â€Č-kinase activity. Finally, in wortmannin-treated cells there is increased EGF-stimulated tyrosine phosphorylation when EGFRs are retained on the perimeter membrane of MVBs. Therefore, we suggest that inward vesiculation is involved directly with attenuating signal transduction

    Current methods to analyze lysosome morphology, positioning, motility and function

    Get PDF
    Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.Medical Biochemistr

    ARF1·GTP, Tyrosine-based Signals, and Phosphatidylinositol 4,5-Bisphosphate Constitute a Minimal Machinery to Recruit the AP-1 Clathrin Adaptor to Membranes

    Get PDF
    At the trans-Golgi network, clathrin coats containing AP-1 adaptor complexes are formed in an ARF1-dependent manner, generating vesicles transporting cargo proteins to endosomes. The mechanism of site-specific targeting of AP-1 and the role of cargo are poorly understood. We have developed an in vitro assay to study the recruitment of purified AP-1 adaptors to chemically defined liposomes presenting peptides corresponding to tyrosine-based sorting motifs. AP-1 recruitment was found to be dependent on myristoylated ARF1, GTP or nonhydrolyzable GTP-analogs, tyrosine signals, and small amounts of phosphoinositides, most prominently phosphatidylinositol 4,5-bisphosphate, in the absence of any additional cytosolic or membrane bound proteins. AP-1 from cytosol could be recruited to a tyrosine signal independently of the lipid composition, but the rate of recruitment was increased by phosphatidylinositol 4,5-bisphosphate. The results thus indicate that cargo proteins are involved in coat recruitment and that the local lipid composition contributes to specifying the site of vesicle formation

    Down-Regulation of Protease-activated Receptor-1 Is Regulated by Sorting Nexin 1

    Get PDF
    Degradation or “down-regulation” of protease-activated receptor-1 (PAR1), a G protein-coupled receptor for thrombin, is critical for termination of receptor signaling. Toward understanding the molecular mechanisms by which activated PAR1 is internalized, sorted to lysosomes, and degraded, we investigated whether PAR1 interacted with sorting nexin 1 (SNX1). SNX1 is a membrane-associated protein that functions in lysosomal sorting of the epidermal growth factor receptor. In vitro biochemical binding assays revealed a specific interaction between a glutathione S-transferase fusion of SNX1 and PAR1. In HeLa cells, activated PAR1 colocalized with endogenous SNX1 and coimmunoprecipitated SNX1. SNX1 contains a phox homology domain predicted to bind phosphatidylinositol-3-phosphate and a C-terminal coiled-coil region. To assess SNX1 function, we examined the effects of SNX1 deletion mutants on PAR1 trafficking. Neither the N terminus nor phox homology domain of SNX1 affected PAR1 trafficking. By contrast, overexpression of SNX1 C-terminal domain markedly inhibited agonist-induced degradation of PAR1, whereas internalization remained virtually intact. Immunofluorescence microscopy studies revealed substantial PAR1 accumulation in an early endosome antigen-1-positive compartment in agonist-treated cells expressing SNX1 C terminus. By contrast, lysosome-associated membrane protein-1 distribution was unperturbed. Together, these findings strongly suggest a role for SNX1 in sorting of PAR1 from early endosomes to lysosomes. Moreover, this study provides the first example of a protein involved in lysosomal sorting of a G protein-coupled receptor in mammalian cells
    corecore