21 research outputs found

    Selective Benzyl Alcohol Oxidation over Pd Catalysts

    Get PDF
    In the last decades, the selective liquid phase oxidation of alcohols to the corresponding carbonyl compounds has been a subject of growing interest. Research has focused on green methods that use "clean" oxidants such as O-2 in combination with supported metal nanoparticles as the catalyst. Among the alcohols, benzyl alcohol is one of the most studied substrates. Indeed, benzyl alcohol can be converted to benzaldehyde, largely for use in the pharmaceutical and agricultural industries. This conversion serves as model reaction in testing new potential catalysts, that can then be applied to other systems. Pd based catalysts have been extensively studied as active catalytic metals for alcohol oxidation for their high activity and selectivity to the corresponding aldehyde. Several catalytic materials obtained by careful control of the morphology of Pd nanoparticles, (including bimetallic systems) and by tuning the support properties have been developed. Moreover, reaction conditions, including solvent, temperature, pressure and alcohol concentration have been investigated to tune the selectivity to the desired products. Different reaction mechanisms and microkinetic models have been proposed. The aim of this review is to provide a critical description of the recent advances on Pd catalyzed benzyl alcohol oxidation

    Untangling the role of the capping agent in nanocatalysis : recent advances and perspectives

    Get PDF
    Capping agents (organic ligands, polymers, surfactants, etc.) are a basic component in the synthesis of metal nanoparticles with controlled size and well-defined shape. However, their influence on the performances of nanoparticle-based catalysts is multifaceted and controversial. Indeed, capping agent can act as a "poison", limiting the accessibility of active sites, as well as a "promoter", producing improved yields and unpredicted selectivity control. These effects can be ascribed to the creation of a metal-ligand interphase, whose unique properties are responsible for the catalytic behavior. Therefore, understanding the structure of this interphase is of prime interest for the optimization of tailored nanocatalyst design. This review provides an overview of the interfacial key features affecting the catalytic performances and details a selection of related literature examples. Furthermore, we highlight critical points necessary for the design of highly selective and active catalysts with surface and interphase control

    N-Modified Carbon-Based Materials: Nanoscience for Catalysis

    Get PDF
    Carbon-based materials constitute a large family of materials characterized by some peculiarities such as resistance to both acidic and basic environments, flexibility of structure, and surface chemical groups. Moreover, they can be deeply modified by simple organic reactions (acid-base or redox) to acquire different properties. In particular, the introduction of N-containing groups, achieved by post-treatments or during preparation of the material, enhances the basic properties. Moreover, it has been revealed that the position and chemical nature of the N-containing groups is important in determining the interaction with metal nanoparticles, and thus, their reactivity. The modified activity was addressed to a different metal dispersion. Moreover, experiments on catalysts, showing the same metal dispersion, demonstrated that the best results were obtained when N was embedded into the carbon structure and not very close to the metal active site

    The confinement effect on the activity of Au NPs in polyol oxidation

    Get PDF
    We demonstrate a confinement effect where gold nanoparticles trapped within N-functionalized carbon nanofibers (N-CNFs) are more active for polyol oxidation and promote selectivity towards di-acid products, whereas AuNPs trapped on the surface produce as a major by-product the one derived from C-C cleavage. The behaviour of NPs confined inside the N-CNF channels can be attributed to a different, possibly multiple, coordination of glycerol on the active site

    Au-Based Catalysts : Electrochemical Characterization for Structural Insights

    Get PDF
    Au-based catalysts are widely used in important processes because of their peculiar characteristics. The catalyst performance depends strongly on the nature and structure of the metal nanoparticles, especially in the case of bimetallic catalysts where synergistic effects between the two metals can be occasionally seen. In this paper, it is shown that electrochemical characterisation (cyclovoltammetry CV and electrochemical impedance spectroscopy EIS) of AuPd systems can be used to determine the presence of an electronic interaction between the two metals, thus providing a strong support in the determination of the nature of the synergy between Au and Pd in the liquid phase oxidation of alcohols. However, it seems likely that the strong difference in the catalytic behavior between the single metals and the bimetallic system is connected not only to the redox behaviour, but also to the energetic balance between the different elementary steps of the reaction

    Tailored N-containing carbons as catalyst supports in alcohol oxidation

    Get PDF
    The introduction of N-containing functionalities in carbon-based materials is brought to stable and highly active metal-supported catalysts. However, up to now, the role of the amount and the nature of N-groups have not been completely clear. This study aims to clarify these aspects by preparing tailored N-containing carbons where different N-groups are introduced during the synthesis of the carbon material. These materials were used as the support for Pd nanoparticles. Testing these catalysts in alcohol oxidations and comparing the results with those obtained using Pd nanoparticles supported on different N-containing supports allowed us to obtain insight into the role of the different N-containing groups. In the cinnamyl alcohol oxidation, pyridine-like groups seem to favor both activity and selectivity toward cinnamaldehyde

    Enhanced activity of Au/NiO nanohybrids for the reductive amination of benzyl alcohol

    Get PDF
    Gold nanoparticles were prepared by sol immobilization (AuSI) or deposition precipitation (AuDP), then deposited on NiO and commercial TiO2(P25). The Au/NiO catalysts showed higher activity and yield to the secondary amine, compared to Au/TiO2catalysts, when tested for the reductive amination of benzyl alcohol with isopropylamine. We attribute this result to a synergistic effect between Au and NiO. Moreover, as a result of the protective effect of the polyvinyl alcohol used in the sol immobilization synthesis, the gold nanoparticles on NiO demonstrate an increased resistance to structural changes during the reaction. This effect results in enhanced catalytic efficiency in terms of activity, and better stability against deactivation

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Identifying the role of N-heteroatom location in the activity of metal catalysts for alcohol oxidation

    No full text
    This work focuses on understanding how the proximate location and bonding of N heteroatoms affect the stability and reactivity of Pd-based catalysts for the oxidation of alcohols in the solution. The results show that the simple adsorption of N groups, from the solution, has a detrimental effect on the catalytic activity and stability. In contrast, chemically bound N moieties within the carbon structure improve these properties, which limits the leaching of metal and coarsening of metal particles. Moreover, the benefits of N atoms are realized only if the N atom is covalently bonded to the support and not directly bonded to the Pd nanoparticles

    Benzyl Alcohol Oxidation on Carbon-Supported Pd Nanoparticles: Elucidating the Reaction Mechanism

    No full text
    Experiments were conducted on the liquid-phase oxidation of benzyl alcohol over Pd nanoparticles, with the aim of determining the operative chemical reaction. Experiments were conducted in a batch reactor with para-xylene as the solvent and continuous gas purging of the headspace. The following experimental parameters were varied: the initial benzyl alcohol concentration, the oxygen partial pressure in the headspace, and the reactor temperature. From trends in the concentration profiles and integrated production of each product, it was determined that there are two primary reaction paths: A) an alkoxy pathway leading to toluene, benzaldehyde, and benzyl ether, and B) a carbonyloxyl pathway (\u201cneutral carboxylate\u201d) leading to benzoic acid, benzene, and benzyl benzoate. From the mechanism elucidated, it is clear that the coverages of atomic hydrogen, atomic oxygen, and surface hydroxyls must be accounted for to achieve a complete description of the quantitative kinetics
    corecore