41 research outputs found
A Fast Radio Burst in a Compact Galaxy Group at z ∼ 1
FRB 20220610A is a high-redshift fast radio burst (FRB) that has not been observed to repeat. Here, we present rest-frame UV and optical Hubble Space Telescope observations of the field of FRB 20220610A. The imaging reveals seven extended sources, one of which we identify as the most likely host galaxy with a spectroscopic redshift of z = 1.017. We spectroscopically confirm three additional sources to be at the same redshift and identify the system as a compact galaxy group with possible signs of interaction among group members. We determine the host of FRB 20220610A to be a star-forming galaxy with a stellar mass of ≈109.7 M ⊙, mass-weighted age of ≈2.6 Gyr, and star formation rate (integrated over the last 100 Myr) of ≈1.7 M ⊙ yr−1. These host properties are commensurate with the star-forming field galaxy population at z ∼ 1 and trace their properties analogously to the population of low-z FRB hosts. Based on estimates of the total stellar mass of the galaxy group, we calculate a fiducial contribution to the observed dispersion measure from the intragroup medium of ≈90-182 pc cm−3 (rest frame). This leaves a significant excess of 515 − 272 + 122 pc cm−3 (in the observer frame); further observation will be required to determine the origin of this excess. Given the low occurrence rates of galaxies in compact groups, the discovery of an FRB in one demonstrates a rare, novel environment in which FRBs can occur. As such groups may represent ongoing or future mergers that can trigger star formation, this supports a young stellar progenitor relative to star formation
The Demographics, Stellar Populations, and Star Formation Histories of Fast Radio Burst Host Galaxies: Implications for the Progenitors
We present a comprehensive catalog of observations and stellar population properties for 23 highly secure host galaxies of fast radio bursts (FRBs). Our sample comprises 6 repeating FRBs and 17 apparent nonrepeaters. We present 82 new photometric and 8 new spectroscopic observations of these hosts. Using stellar population synthesis modeling and employing nonparametric star formation histories (SFHs), we find that FRB hosts have a median stellar mass of ≈109.9M⊙, mass-weighted age ≈5.1 Gyr, and ongoing star formation rate ≈1.3 M⊙ yr−1 but span wide ranges in all properties. Classifying the hosts by degree of star formation, we find that 87% (20 of 23 hosts) are star-forming, two are transitioning, and one is quiescent. The majority trace the star-forming main sequence of galaxies, but at least three FRBs in our sample originate in less-active environments (two nonrepeaters and one repeater). Across all modeled properties, we find no statistically significant distinction between the hosts of repeaters and nonrepeaters. However, the hosts of repeating FRBs generally extend to lower stellar masses, and the hosts of nonrepeaters arise in more optically luminous galaxies. While four of the galaxies with the clearest and most prolonged rises in their SFHs all host repeating FRBs, demonstrating heightened star formation activity in the last ≲100 Myr, one nonrepeating host shows this SFH as well. Our results support progenitor models with short delay channels (i.e., magnetars formed via core-collapse supernova) for most FRBs, but the presence of some FRBs in less-active environments suggests a fraction form through more delayed channels
The emergence of a new source of X-rays from the binary neutron star merger GW170817
The binary neutron-star (BNS) merger GW170817 is the first celestial object
from which both gravitational waves (GWs) and light have been detected enabling
critical insight on the pre-merger (GWs) and post-merger (light) physical
properties of these phenomena. For the first years after the merger
the detected radio and X-ray radiation has been dominated by emission from a
structured relativistic jet initially pointing degrees away from
our line of sight and propagating into a low-density medium. Here we report on
observational evidence for the emergence of a new X-ray emission component at
days after the merger. The new component has luminosity at 1234 days, and represents a - excess compared to the expectations from the off-axis
jet model that best fits the multi-wavelength afterglow of GW170817 at earlier
times. A lack of detectable radio emission at 3 GHz around the same time
suggests a harder broadband spectrum than the jet afterglow. These properties
are consistent with synchrotron emission from a mildly relativistic shock
generated by the expanding merger ejecta, i.e. a kilonova afterglow. In this
context our simulations show that the X-ray excess supports the presence of a
high-velocity tail in the merger ejecta, and argues against the prompt collapse
of the merger remnant into a black hole. However, radiation from accretion
processes on the compact-object remnant represents a viable alternative to the
kilonova afterglow. Neither a kilonova afterglow nor accretion-powered emission
have been observed before.Comment: 66 pages, 12 figures, Submitte
A tidal disruption event coincident with a high-energy neutrino
High Energy Astrophysic
Recommended from our members
The superluminous Type IIn supernova ASASSN-15ua: part of a continuum in extreme precursor mass-loss
We present a series of ground-based photometry and spectroscopy of the superluminous Type IIn supernova (SN) ASASSN-15ua, which shows evidence for strong interaction with pre-existing dense circumstellar material (CSM). Our observations constrain the speed, mass-loss rate, and extent of the progenitor wind shortly before explosion. A narrow P Cygni absorption component reveals a progenitor wind speed of ∼100 km s-1. As observed in previous SNe IIn, the intermediate-width H α emission became more asymmetric and blueshifted over time, suggesting either asymmetric CSM, an asymmetric explosion, or increasing selective extinction from dust within the post-shock shell or SN ejecta. Based on the CSM radius and speed, we find that the progenitor suffered extreme eruptive mass-loss with a rate of 0.1-1 M· yr-1 during the ∼12 yr immediately before the death of the star that imparted ∼1048 erg of kinetic energy to the CSM. Integrating its V-band light curve over the first 170 d after discovery, we find that ASASSN-15ua radiated at least 3 × 1050 erg in visual light alone, giving a lower limit to the total radiated energy that may have approached 1051 erg. ASASSN-15ua exhibits many similarities to two well-studied superluminous SNe IIn: SN 2006tf and SN 2010jl. Based on a detailed comparison of these three, we find that ASASSN-15ua falls in between these two events in a wide variety of observed properties and derived physical parameters, illustrating a continuum of behaviour across superluminous SNe IIn. © 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for Their Progenitors
We present observations and detailed characterizations of five new host galaxies of fast radio bursts (FRBs) discovered with the Australian Square Kilometre Array Pathfinder (ASKAP) and localized to ≲1″. Combining these galaxies with FRB hosts from the literature, we introduce criteria based on the probability of chance coincidence to define a subsample of 10 highly confident associations (at z = 0.03-0.52), 3 of which correspond to known repeating FRBs. Overall, the FRB-host galaxies exhibit a broad, continuous range of color (M u - M r = 0.9-2.0), stellar mass (M ∗ = 108 - 6 × 1010 M o˙), and star formation rate (SFR = 0.05-10 M o˙ yr-1) spanning the full parameter space occupied by z 99% c.l.). We measure a median offset of 3.3 kpc from the FRB to the estimated center of the host galaxies and compare the host-burst offset distribution and other properties with the distributions of long- and short-duration gamma-ray bursts (LGRBs and SGRBs), core-collapse supernovae (CC-SNe), and SNe Ia. This analysis rules out galaxies hosting LGRBs (faint, star-forming galaxies) as common hosts for FRBs (>95% c.l.). Other transient channels (SGRBs, CC-, and SNe Ia) have host-galaxy properties and offsets consistent with the FRB distributions. All of the data and derived quantities are made publicly available on a dedicated website and repository
Recommended from our members
A Radio-selected Population of Dark, Long Gamma-Ray Bursts: Comparison to the Long Gamma-Ray Burst Population and Implications for Host Dust Distributions
We present centimeter-band and millimeter-band afterglow observations of five long-duration γ-ray bursts (GRBs; GRB 130131A, 130420B, 130609A, 131229A, 140713A) with dust-obscured optical afterglow emission, known as “dark” GRBs. We detect the radio afterglow of two of the dark GRBs (GRB 130131A and 140713A), along with a tentative detection of a third (GRB 131229A) with the Karl G. Jansky Very Large Array (VLA). Supplemented by three additional VLA-detected dark GRBs from the literature, we present uniform modeling of their broadband afterglows. We derive high line-of-sight dust extinctions of A V,GRB ≈ 2.2- ≳ 10.6 mag. Additionally, we model the host galaxies of the six bursts in our sample, and derive host galaxy dust extinctions of A V,Host ≈ 0.3-4.7 mag. Across all tested γ-ray (fluence and duration) and afterglow properties (energy scales, geometries, and circumburst densities), we find dark GRBs to be representative of more typical unobscured long GRBs, except in fluence, for which observational biases and inconsistent classification may influence the dark GRB distribution. Additionally, we find that A V,GRB is not related to a uniform distribution of dust throughout the host, nor to the extremely local environment of the burst, indicating that a larger-scale patchy dust distribution is the cause of the high line-of-sight extinction. Since radio observations are invaluable to revealing heavily dust-obscured GRBs, we make predictions for the detection of radio emission from host star formation with the next-generation VLA. © 2022. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]