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Cosmic neutrinos provide a unique window into the otherwise-hidden mechanism of par-
ticle acceleration in astrophysical objects. A flux of high-energy neutrinos was discovered
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in 20131, and the IceCube Collaboration recently associated one high-energy neutrino with
a flare from the relativistic jet of an active galaxy pointed towards the Earth2. However
a combined analysis of many similar active galaxies revealed no excess from the broader
population3, leaving the vast majority of the cosmic neutrino flux unexplained. Here we
present the association of a radio-emitting tidal disruption event (AT2019dsg4) with another
high-energy neutrino, identified as part of our systematic search for optical counterparts to
high-energy neutrinos with the Zwicky Transient Facility (ZTF)5. The probability of finding
any radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding
one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic obser-
vations can be explained through a multi-zone model, with radio analysis revealing a central
engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting out-
flow. This provides an ideal site for PeV neutrino production. The association suggests that
tidal disruption events contribute to the cosmic neutrino flux. Unlike previous work which
considered the rare subset of tidal disruption events with relativistic jets6–9, our observations
of AT2019dsg suggest an empirical model with a mildly-relativistic outflow.

On 2019 October 1, the IceCube Neutrino Observatory reported the detection of a ∼0.2 PeV

neutrino, IC191001A, with a 59% probability of being of astrophysical origin10. Seven hours later,

the direction of the incoming neutrino was observed by ZTF as part of our neutrino follow-up pro-

gram. The data was processed by our multi-messenger pipeline (see Supplementary Information;

SI), which performs searches for extragalactic transients in spatial and temporal coincidence with

high-energy neutrinos11, and the radio-emitting tidal disruption event AT2019dsg was identified as

a candidate neutrino source.

Tidal Disruption Events (TDEs) are rare transients that occur when stars pass close to su-

permassive black holes (SMBHs). Studies have suggested that TDEs are sources of high-energy

neutrinos and ultra-high energy cosmic rays12, 13, in particular those TDEs with relativistic parti-

cle jets6–9. TDEs with non-thermal radio emission are considered the most likely candidates for

sources of high-energy neutrinos. AT2019dsg was thus quickly identified as a promising candidate

neutrino source14. Given that there are typically .2 radio-emitting TDEs in the entire northern sky

at any one time, we find that in the 80 sq. deg. of sky observed during the eight neutrino follow-up

campaigns by ZTF up to March 2020, the probability of finding a radio-detected TDE by chance

is 0.5%. With the second highest bolometric energy flux of all seventeen TDEs detected by ZTF,
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the probability of finding a TDE at least as bright as AT2019dsg by chance is just 0.2% (see SI).

AT2019dsg was discovered15 by ZTF on 2019 April 9, and was classified as a TDE on the

basis of its optical spectrum16 with a measured redshift of z = 0.051, implying a luminosity

distance DL ≈ 230 Mpc assuming a flat cosmology with ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1.

The optical/UV continuum of AT2019dsg is well described by a single blackbody photosphere with

a near-constant temperature4 of 104.59±0.02 K and radius of 1014.59±0.03 cm. The peak luminosity of

1044.54±0.08 erg s−1 is in the top 10% of the 40 known optical TDEs to date4, and the temperature is

in the top 5%. By the time of the neutrino detection, the optical/UV luminosity appeared to have

reached a plateau (see Figure 1). Such plateaus are common in TDEs and interpreted as emission

from the outer part of an accretion disk17, 18, but typically occur a few years after peak. The rapid

appearance of an accretion-disk plateau would be expected for disruptions around higher-mass

SMBHs. Indeed the total mass of the host galaxy of AT2019dsg is in the top 10% of all optical

TDE hosts. Assuming 50% of the host mass is in the bulge, we estimate19 a black hole mass of

∼ 3× 107M�.

AT2019dsg was also detected in X-rays, beginning 37 days after discovery. Though the first

X-ray observation indicated a bright source, with a high X-ray to optical ratio of LX/Lopt ∼0.1,

this X-ray flux faded extremely rapidly, as shown in Figure 1. This rate of decline is unprece-

dented, with at least a factor of 50 decrease in X-ray flux over a period of 159 days. Similar to the

optical/UV emission, the observed X-ray spectrum is consistent with thermal emission, but from

a blackbody of temperature 105.9 K (0.072 ± 0.005 keV) and, assuming emission from a circular

disk, a radius∼ 2× 1011 cm. As for most X-ray-detected TDEs20–22, the blackbody radius appears

much smaller than the Schwarzschild radius (RS ∼ 1013 cm) inferred from the galaxy scaling

relation19. Small emitting areas can arise from an edge-on orientation, because the relativistic ve-

locities at the inner disk can Doppler boost a large area of the disk out of the X-ray band. Since

our observations probe close to the Wien tail of the spectrum, a small temperature decrease due to

absorption would also yield a significantly underestimated blackbody radius and luminosity22. The

exponential decrease of the flux could be caused by cooling of the newly-formed TDE accretion

disk18 or increasing X-ray obscuration.

Radio observations shown in Figure 2 reveal a third distinct spectral component, namely

synchrotron emission from non-thermal electrons. We model this emission with a conical geometry
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as expected for outflows (e.g., jets or winds) that are launched from—and collimated by—the inner

parts of flared accretion disks that emit close to the Eddington limit. Given that electrons are

typically accelerated with much lower efficiency than protons in astrophysical accelerators23, we

assume that they carry 10% of the energy carried by relativistic protons (εe = 0.1). We further

assume that the magnetic fields carry 0.1% of the total energy (εB = 10−3), as indicated by radio

observations of other TDEs24 and supernovae25. For a half-opening angle, φ, of 30◦ we find R =

1.5 × 1016 cm in our first epoch (41 days after discovery), increasing to R = 7 × 1016 cm shortly

after the neutrino detection (177 days after discovery). These radii scale26 asR ∝ [1−cos(φ)]−8/19.

The implied expansion velocity is roughly constant at v/c = Ṙ/c = 0.12 ± 0.01 during the first

three epochs, with an acceleration to v/c = 0.21± 0.02 for the last epoch. These are the velocities

of the synchrotron-emitting region, and thus provide a lower limit to the velocity at the base of the

outflow. Indeed even the hotspots of relativistic jets from active galaxies that are frustrated by gas

in their host galaxy are typical observed27 to have subrelativistic expansion velocities of ∼ 0.1c.

The inferred outflow energy, E, shows a linear increase from 2.5 × 1049 erg to 2 × 1050 erg

(Figure 2), which is not expected in models28, 29 of TDE radio emission that involve a single injec-

tion of energy. While some scenarios can yield an increase in inferred energy from a single energy

injection, none of these are consistent with the full set of observed properties. First, a single ejec-

tion with a range of velocities could explain the observed linear increase of energy with time (the

slower ejecta arrive later), but is incompatible with the increasing velocity. Second, an increase of

the efficiency for conversion of Poynting luminosity to relativistic particles is unlikely because the

target density that is available to establish this conversion is decreasing. And finally, an increase

of solid angle that emits to our line of sight is only expected for relativistic outflows that deceler-

ate. Instead, for AT2019dsg, the observations suggest the presence of a central engine that yields

continuous energy injection through a coupling of accretion power to the radio emission30, with

acceleration in the final radio epoch due to a decrease in the slope of the ambient matter density

profile.

Neutrino emission from AT2019dsg. With this strong evidence for three distinct emission zones

derived purely from multi-wavelength observations, we consider whether this picture is consistent

with AT2019dsg being the source of the neutrino IC191001A. In particular, neutrino production

requires protons to be accelerated to sufficiently high energies, and to collide with a suitably abun-

dant target. The detection of a single high-energy neutrino implies a mean expectation in the range

5



0.05 < Nν,tot < 4.74 at 90% confidence, where Nν,tot is the cumulative neutrino expectation for all

TDEs that ZTF has observed. AT2019dsg emits fbol ∼ 0.16 of the population bolometric energy

flux, and if we take this as a proxy for neutrino emission, we would expect 0.008 . Nν . 0.76 for

this source.

Radio observations confirm that particle acceleration is indeed occurring, and that this con-

tinues without decline through to the detection of the neutrino at ∼180 days post-discovery. Given

that neutrinos typically take a fraction ηpν ∼ 0.05 of the parent proton energy, our accelerator must

be capable of accelerating protons to at least 4 PeV. We evaluate the Hillas criterion31 that the pro-

ton Larmor radius be less than the system size, to determine whether this is possible. We use our

estimates for conditions in the synchrotron zone at the time of neutrino detection, withB ∼ 0.07 G

and R ∼ 7×1016 cm for the near-contemporaneous radio epoch. Taking this as a baseline, we find

a maximum proton energy of ∼160 PeV, far in excess of our requirements. The Hillas criterion

can also be satisfied within the engine that powers the radio-emitting outflow because the product

BR is not expected to decrease at smaller radii (e.g. B ∝ R−1 for a toroidal configuration).

The target for neutrino production can be either photons (pγ interactions) or protons (pp

interactions). For a photon target, neutrino production occurs above an energy determined by the

mass of the ∆ resonance, m∆. For a thermal spectrum, of temperature T , we then find εν ∼
ηpν [(m

2
∆ − m2

p)/4εγ] ≈ 0.3 × (T/105K)
−1

PeV. For the UV photosphere of the TDE, we find

εν ∼ 0.8 PeV, while for the compact X-ray source, we find εν ∼ 0.05 PeV. Both of these values

are compatible with the observed neutrino, for which there is a typical uncertainty of one energy

decade2, so either photon field could serve as a target. For the UV photosphere, we find that the

mean free path for the parent proton of a PeV neutrino (∼ 2 × 1013 cm, see SI) is much smaller

than the photosphere radius, so the UV photosphere is indeed optically thick. At smaller radii, the

X-rays would overtake the UV photons as dominant scattering targets.

In the multi-zone model shown in Figure 3, the thermal photons provide a guaranteed target

for pion production. However hadrons could in principle also serve as a target, leading us to

consider a single-zone scenario in which the protons are accelerated at the same location as the

synchrotron-emitting electrons, with the neutrino spectrum following the same intrinsic energy

power law as the protons and electrons. For pp neutrino production, high target densities of np ∼
1/(σppR) ∼ 108 cm−3 would be required for efficient production of neutrinos, where σpp is the
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proton-proton cross section and R ∼ 1017 cm is the characteristic size of the radio region at the

time of neutrino production. This high density could be provided by the unbound stellar debris,

although this component moves with a typical maximum velocity29 of 0.05 c , and therefore the

majority of this debris would have to be swept up with the outflow. Alternatively, the density could

be provided by pre-existing gas, although since this gas orbits in the sphere of influence of the

black hole, it would be challenging to satisfy the upper limits on pre-disruption accretion.

To obtain the expected neutrino flux from this source we have to estimate the energy carried

by protons (Ep) that are accelerated above the energy threshold needed to produce high-energy

neutrinos. The outflow energy of 2×1050 erg that we derived from the radio observations (Figure 2)

represent a lower bound to the energy that is available for particle acceleration in a central engine.

Indeed, the total energy budget for a TDE is set by the mass of the disrupted star, with ETDE ∼
(1/2) 0.1M� c2 ∼ 1053 erg for a solar-mass star. We will assume 1% of this total energy budget

is carried by relativistic protons, Ep ∼ 1051 erg. The total energy in muon neutrinos would then

be Eν,tot = (1/8)Ep ∼ 1050 erg for efficient optically-thick pion production, after accounting for

the pion decay yield and subsequent neutrino flavour oscillations. Convolving this implied energy

Eν,tot with the effective area, Aeff , of IceCube’s high-energy neutrino alert selection32, we estimate

the expected number of neutrino alerts. Approximating the sharply-peaked pγ neutrino spectrum

as a monoenergetic flux anywhere between 0.2 PeV . εν . 1 PeV, we find Nν = (Eν,tot /εν)(Aeff

/ 4πD2
L) ∼ 0.03. Thus any optically-thick pγ scenario would be sufficient to produce the neutrino

under these assumptions.

In contrast to a peaked pγ neutrino spectrum, for pp production the neutrinos would instead

follow a power law. Many of these neutrinos would then fall below the threshold of IceCube’s alert

selection. The associated gamma rays would however fall within the sensitive range of gamma-ray

telescopes, so this scenario could be securely identified through a joint neutrino-gamma ray signal.

While no gamma-ray emission was measured using the Fermi-LAT telescope for AT2019dsg (see

SI), gamma-ray Cherenkov telescopes may be sensitive to the expected gamma-ray signal, and the

corresponding low-energy (TeV) neutrino emission could confirm a hadronic origin. Conversely,

the high optical depth of the UV photosphere would absorb any gamma rays accompanying pγ

neutrino emission7. Some contribution from gamma-dark sources is required to explain the large

astrophysical neutrino flux33.
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Given the different neutrino spectrum expectations, a search for accompanying lower-energy

neutrinos could be used to probe the conditions at the site of proton interaction. IceCube has al-

ready searched for correlations between a sample of TDEs and a neutrino dataset dominated by

lower-energy events34. Thermal TDEs account for less than 39% of the diffuse astrophysical flux

under the assumption of standard candles following a power-law spectrum. This finding is not in

tension with the association we have identified, particularly given the low expected neutrino flux

we have derived for AT2019dsg. As TDE discovery rates have increased substantially since the

previous IceCube analysis4, 34, future searches will be able to study neutrino emission from TDEs

with much greater sensitivity. A measurement of O(∼1-10) TeV neutrinos without accompanying

gamma rays would indicate that neutrino production is occurring in the X-ray photosphere, rather

than in the UV photosphere. Indeed, such a detection would confirm the presence of a hidden

X-ray source in the first place, while our electromagnetic observations cannot. Conversely, a lack

of complementary low-energy neutrinos and gamma rays implies that only UV photons serve as

a target. Neutrinos can uniquely serve as probes of the inner region of TDEs, using this novel

method of extragalactic neutrino tomography. Now that a persistent central engine has been re-

vealed in coincidence with a high-energy neutrino, we can begin to shed light on the role of TDEs

as astrophysical accelerators.
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Figure 1: Multi-wavelength lightcurve of AT2019dsg. Error bars represent 1σ intervals. The upper

panel shows the optical photometry from ZTF, alongside UV observations from Swift-UVOT. The

plateau luminosity is a factor of 10 brighter in UVW2 than the pre-disruption baseline of the host

galaxy. The lower panel shows the integrated X-ray energy flux, from observations with Swift-XRT

and XMM-Newton, in the energy range 0.3-10 keV. Arrows indicated 3σ upper limits. The vertical

dotted line illustrates the arrival of IC191001A.
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Figure 2: Synchrotron analysis. Left: radio measurements from VLA, AMI, and MeerKAT, at four

epochs with times listed relative to the first optical detection. The coloured lines show samples

from the posterior distribution of synchrotron spectra fitted to the measurements, the dashed lines

trace the best-fit parameters. The free parameters are the electron power-law index (p = 2.9±0.1),

the host baseline flux density, plus the magnetic field and radius for each epoch. Right: the energy

and radius for each epoch for a conical outflow geometry with an opening angle of 60◦. The dotted

lines indicate a linear increase of both parameters. The last epoch shows a significant (> 3σ)

increase over the previous expansion rate of the outflow. Error bars represent 1σ intervals.

10



Figure 3: Diagram illustrating the temporal evolution (left) and geometry (right) of the three emis-

sion zones in AT2019dsg. The size of the region responsible for radio emission, as well as the

blackbody radius for the UV-emission is derived from data. Note that the opening angle for the

outflow is largely unconstrained. X-ray emission is expected to arise close to the Schwarzschild

radius, which is plotted here at RS = 9× 1012 cm corresponding to a BH mass of 3× 107M�. The

white lines represent a continuous outflow with velocity c.
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Supplementary Information

1 Discovery and Classification History of AT2019dsg

AT2019dsg was discovered by ZTF on 2019 April 9, initially named ZTF19aapreis, and reported

on 2019 April 22 as a likely extragalactic transient15. AT2019dsg was subsequently classified as

a TDE on 2019 May 13 by ePESSTO+16. Radio emission was tentatively reported on 2019 May

23 by AMI-LA35, and confirmed on 2019 July 26 by e-MERLIN36. In addition to observations as

part of a systematic ZTF search for TDEs4, the association with IC191001A prompted additional

follow-up.

2 The ZTF Neutrino Follow-up Program

ZTF routinely images the visible Northern Sky once every three nights to a median depth of

20.5m, as part of a public survey5, 37. For our neutrino follow-up program, this wide-field ca-

dence is supplemented by dedicated Target-of-Opportunity (ToO) observations scheduled through

the GROWTH ToO Marshal38.

With ZTF, we have followed up eight neutrinos in the period from survey start on 2018

March 20 to 2020 March 31, out of a total of 31 neutrino alerts published by IceCube. Table

S1 summarises each neutrino alert that has been observed by ZTF. From 2019 June 17, IceCube

published neutrino alerts with improved selection criteria to provide an elevated alert rate32. In

addition to 1 of the 12 alerts under the old selection, ZTF followed up 7 of the 19 alerts published

under the new selection. In general, we aim to follow all well-localised neutrinos of likely as-

trophysical origin reported by IceCube which are visible to ZTF and can be observed promptly.

Those alerts not observed by ZTF are summarised in Table S2. Of those 23 alerts not followed up

by ZTF, the primary reasons were proximity to the Sun (8/23), alerts with poor localisation and

low astrophysical probability (6/23) and alert retraction (4/23). For events which were reported

with estimates of astrophysical probabilityb, we chose not to follow up those that had both low

astrophysical probability (< 50%) and large localisation regions (> 10 sq. deg.).

Each neutrino localisation region can typically be covered by one or two ZTF observation

fields. Multiple observations are scheduled for each field, with both g and r filters, and a sepa-

bThis value was not reported for high-energy starting events (HESE) under the old IceCube alert selection, nor for

one recent alert, IC200107A, that was identified outside of the standard alert criteria39.
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Event R.A. (J2000) Dec (J2000) 90% area ZTF obs Signalness Ref
(deg) (deg) (sq. deg.) (sq. deg.)

IC190503A 120.28 +6.35 1.94 1.37 36% 40, 41

IC190619A 343.26 +10.73 27.16 21.57 55% 42, 43

IC190730A 225.79 +10.47 5.41 4.52 67% 44, 45

IC190922B 5.76 -1.57 4.48 4.09 51% 46–48

IC191001A 314.08 +12.94 25.53 20.56 59% 10, 14, 49

IC200107A 148.18 +35.46 7.62 6.22 - 39, 50

IC200109A 164.49 +11.87 22.52 20.06 77% 51, 52

IC200117A 116.24 +29.14 2.86 2.66 38% 53–55

Table S1: Summary of the eight neutrino alerts followed up by ZTF, with IC191001A highlighted

in bold. The 90% area column indicates the region of sky observed at least twice by ZTF, within the

reported 90% localisation, and accounting for chip gaps. The signalness describes the probability

that each neutrino is of astrophysical origin, rather than arising from atmospheric backgrounds.

One alert, IC200107A, was reported without a signalness estimate.

Cause Events
Alert Retraction IC180423A56, IC181031A57, IC190205A58, IC190529A59

Proximity to Sun IC180908A60, IC181014A61, IC190124A62, IC190704A63

IC190712A64, IC190819A65, IC191119A66, IC200227A67

Low Altitude IC191215A68

Southern Sky IC190331A69, IC190504A70

Poor Signalness & Localisation IC190221A71, IC190629A72, IC190922A73

IC191122A74, IC191204A75, IC191231A76

Bad Weather IC200120A77, 78

Telescope Maintenance IC181023A79

Table S2: Summary of the 23 neutrino alerts that were not followed up by ZTF since survey start on

2018 March 20. Of these, 4/23 were retracted, 11/23 were inaccessible to ZTF for various reasons,

6/23 were deemed alerts of poor quality, while just 2/23 were alerts that were missed although they

passed our criteria.
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ration of at least 15 minutes between images. These observations typically last for 300 s, with a

typical limiting magnitude of 21.0m. ToO observations are typically conducted on the first two

nights following a neutrino alert, before swapping to serendipitous coverage as part of the public

survey. Following observations, images are processed by IPAC80, and alert packets are generated

for significant detections from difference images81.

This alert stream of significant detections is then filtered by our follow-up pipeline built

within the AMPEL framework, a platform for realtime analysis of multi-messenger astronomy

data82. Our selection is based on an algorithm for identifying extragalactic transients82. We search

ZTF data both preceding and following the arrival of the neutrino. In order to identify candidate

counterparts to the neutrino, we apply the following cuts to ToO and survey data:

• We reject likely subtraction artifacts using machine learning classification and morphology

cuts83.

• We reject moving objects through matches to known nearby solar system objects80. We

further reject moving objects by requiring multiple detections for each candidate (i.e, at the

same location) separated temporally by at least 15 minutes.

• We remove stellar sources by rejecting detections cross-matched84 to objects with measured

parallax in GAIA DR2 data85, defined as non-zero parallax with a significance of at least

3σ. We further reject likely stars with machine learning classifications86, based on sources

detected by Pan-STARRS187, removing those objects with an estimated stellar probability

greater than 80%.

• We identify likely AGN by cross-matching to the WISE survey and applying IR color cuts88.

We reject detections consistent with low-level AGN variability.

• We require that objects lie within the reported 90% error region to ensure spatial coincidence,

and that they are detected at least once following the neutrino arrival time to ensure temporal

coincidence.

These cuts typically yield ∼0.2 candidates per square degree of sky. Promising candidates

are prioritised for spectroscopic classification, to confirm or rule out a possible association with a

given neutrino.
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AT2019dsg (R.A.[J2000] = 314.26 deg, Dec[J2000] = +14.20 deg) was spatially-coincident

with the 90% localisation of the neutrino IC191001A10 (R.A. = 314.08+6.56
−2.26 deg, Dec = +12.94+1.50

−1.47

deg), at a distance of 1.27 deg to the best-fit position. It was also temporally coincident, being

detected by ZTF in our ToO observations following the neutrino detection. There were additionally

three candidate supernovae found in the error region of IC191001A, consistent with background

expectations. AT2019dsg was the first TDE identified by our pipeline, and the first TDE to be

reported in coincidence with any high-energy neutrino.

3 Probability of Chance Coincidence

During the first 18 months of survey operations, ZTF identified 17 TDEs4, distributed over 28000

deg of observed sky (the ZTF survey footprint, after removing sources with a Galactic latitude

|b| < 7). Of these TDEs, each was typically detected for ∼6 months4. We thus estimate that

the density of ZTF-detected TDEs is approximately 2.0 ×10−4 per sq. deg. of sky in the survey

footprint at any given time. Our follow-up pipeline requires that any candidate be detected by

ZTF in ToO observations following a neutrino, in order to establish temporal coincidence. We

assume that our neutrino pipeline does not have a significantly higher selection efficiency than the

dedicated ZTF program to identify TDEs4, and thus that the latter provides a reasonable estimate

on the background rate of TDEs passing our pipeline.

Those TDEs with radio detections are considered the most promising candidates for neutrino

production, as the radio emission serves as a tracer for the particle acceleration required in neutrino

sources. We can consider the fraction of TDEs which would additionally be detected in radio,

assuming that all could be observed. Among the ZTF sample of confirmed TDEs, we undertook

radio follow-up observations with the VLA for 6, of which 2 were detected. Taking this implied

radio-emitting fraction of 33%, we then find a final density of 5.9 ×10−5 radio-emitting TDEs per

sq. deg. of surveyed sky.

As shown in Table S1, ZTF has followed-up eight neutrinos up to January 2020, and has

covered a combined localisation region of 81.05 sq. deg. With this sky area, the expected number

of coincident radio-detected TDEs across all of our neutrino follow-up campaigns is 4.8 ×10−3.

The Poisson probability of observing at least one chance-coincidence radio-emitting TDE during

our entire neutrino follow-up campaign is thus 4.8×10−3.

As radio follow-up observations of ZTF TDEs were biased towards those most likely to be
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detectable, this estimate is an overly conservative one. Because the bolometric energy flux de-

rived from UV/optical observations (i.e., the blackbody luminosity over the square of the distance)

serves as a proxy the non-thermal emission, TDEs which were bright under this metric were pref-

erentially selected for radio observations. To avoid this selection bias, we can instead directly use

this bolometric energy flux as a proxy for neutrino flux to identify the most promising candidates

for neutrino detection, namely those TDEs which are both nearby and luminous. Of the 17 TDEs

observed by ZTF, AT2019dsg ranks second in this metric. The probability of finding a TDE in our

neutrino follow-up campaign with a bolometric energy flux that is at least as high as AT2019dsg is

thus 1.9×10−3.

4 Optical/UV Observations

Prior to the detection of IC191001A, AT2019dsg had already been repeatedly detected by ZTF P48

telescope as part of the public MSIP survey, most recently on 2019 September 28. These data were

supplemented by photometric observations from the 2m Liverpool Telescope89 and SEDM90, 91

photometry92 obtained using the P60 telescope on Mt Palomar. ToO observations of the neutrino

localisation field began on 2019 October 1, 7.4 hours after the neutrino detection. A second set of

observations were performed the following night. In all of these images AT2019dsg was clearly

visible.

UV observations of AT2019dsg were conducted as part of a systematic survey of UV proper-

ties of all ZTF-identified TDEs93, using the UltraViolet/Optical Telescope94 (UVOT) on board the

Neil Gehrels Swift Observatory (Swift)95. Data were reduced with uvotsource using an aperture

of 7” to capture the entire galaxy (the host flux density was subtracted based on the best-fit galaxy

model93 and uncertainties on this baseline are propagated into the reported UVOT difference pho-

tometry). The first UV observation was performed 15 days after the optical peak on 2019 May

17, and a bright source spatially coincident with the TDE was detected. Subsequent observations

continued at a cadence of 2–3 days, up to 2019 September 7. In this period, AT2019dsg contin-

ued to steadily dim. An additional observation occurred shortly before the neutrino detection on

2019 September 27. Follow-up observations were then triggered by the identification of a possible

association with IC191001A14, beginning on 2019 October 5.

The optical/UV data are summarised in Table S6. We note that in the final ZTF observations,

the source appears to redden in the optical bands. This could be a signature of reverberation due
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emission from dust heated by the TDE96, 97; this dust can reach a temperature of ∼ 2000 K. An

important caveat is that the contrast between the transient emission and the host is very small for

these late-time optical detections, so the residuals in the difference image may need to be corrected

to account for small systematic offsets. That can only be investigated when the images for this

portion of the public survey are published as part of the next ZTF data release. We note that the

UV observations are not subject to the same uncertainty because even at late times the transient

UV flux is about an order of magnitude brighter than the host baseline.

AT2019dsg was first classified as a TDE by ePESSTO+ on on 2019 May 1316, and the red-

shift of AT2019dsg was measured to be z = 0.051. Further high-resolution spectroscopic obser-

vations were conducted using the De Veny Spectrograph on the 4.3m Lowell Discovery Telescope

(LDT, PI: Gezari), the Kast Double Spectrograph on the 3m Lick Observatory Shane Telescope

(Lick, PI: Foley)98, and the Low Resolution Imaging Spectrograph on the 10m Keck Telescope

(Keck, PI: Graham)99, with the most recent spectrum on 2019 September 25. These spectra con-

firm that AT2019dsg belongs to the common spectroscopic class of TDEs with Bowen fluorescence

emission lines and broad Hα emission lines4. We note that the Ca triplet is also clearly visible in

our late-time spectra (rest-frame 8498 Å, 8542Å and 8662 Å), so the SMBH mass could in prin-

ciple be inferred more precisely using higher-resolution spectroscopy of this feature100. Following

the identification of AT2019dsg as a candidate neutrino source, additional high-resolution spectra

of the source were taken with the 200in Hale Telescope Double Spectrograph at Palomar Obser-

vatory (P200, PI: Kasliwal & Kulkarni) on 2019 October 3 and again with Lick on 2019 October

5 and 2019 October 29 (shown in Figure S1). There is no evidence of any significant spectral

evolution between these spectra and the most recent pre-neutrino spectrum from 2019 September

25, and the spectral evolution of AT2019dsg is consistent with that of other TDEs4.

5 X-ray Observations

AT2019dsg was first observed in X-rays on 2019 May 17 by the X-Ray Telescope (XRT)101, also

on board Swift95, as part of a program to categorise the X-ray properties of TDEs. AT2019dsg was

detected at high significance at this epoch, with a measured energy flux of FX ∼ 4 × 10−12 erg

cm−2 (0.3–10 keV). Observations continued with a cadence of 2–3 days, and indicated a sharply-

declining X-ray flux. The source was last detected on 2019 June 14, and not detected again in

any of the following observations continuing until 2019 September 7. An additional observation

was performed with the X-ray Multi-Mirror Mission (XMM-Newton) telescope on 2019 May 30, in
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Figure S1: The spectroscopic evolution of AT2019dsg, beginning with the publicly available clas-

sification spectrum taken with the NTT16, and further spectra from LDT, Lick, Keck and P200.

The Balmer lines are highlighted in cyan, the HeII lines in gray, and the Bowen fluorescence lines

(OIII at 3760Å, NIII at 4100Å and 4640Å) in black. Telluric lines are marked with +.
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the range 0.3-10 keV. The XMM-Newton EPIC-pn observations (programs 082204 and 08425; P.I.

Gezari) were taken in Wide window Thin1 filter mode and reduced using standard techniques with

the XMM-Newton102 Science Analysis System (SAS). The source extraction region was a circle

of radius 35 arcsec at the location of the optical transient in the X-ray image, and the background

was measured using a 108-arcsec circular region (shown in Figure S2). The XMM spectrum was

binned using the GRPPHA command, such that there were at least 20 counts contained in each bin.

It was then fit (χ2/dof = 59.26/65) with the disk blackbody (diskbb) model with Galactic103

and intrinsic (NH ∼ 4 × 1020 cm−2) absorption described using the phabs model in XSPEC

v12.9.1104. The flux was consistent with those of Swift-XRT, and provided a high signal-to-noise

X-ray spectrum well-fitted with a single disk temperature of Tdisk = 105.9 K (0.072 ±0.005 keV),

shown in Figure S3. Following the identification of AT2019dsg as a candidate counterpart to

IC191001A14, additional X-ray observations were triggered. AT2019dsg was again not detected,

with the first Swift-XRT observation occurring on 2019 October 5. An additional XMM observation

on 2019 October 23 yielded a deep upper limit of 9 × 10−14 erg cm−2 s−1 (0.3–10 keV) using

the same thermal model, computed at the 3σ confidence level using the XMM SAS/HEASARC

command eregionanalyse.

6 Radio Observations

Four observations of AT2019dsg were performed with the Karl G. Jansky Very Large Array (VLA)

under project code 19A-395 (PI: van Velzen), on 2019 May 22, June 19, August 8 and October 5.

The array was in its moderately-extended B configuration (maximum baseline 11 km) for the first

two epochs, and in its most extended A-configuration (maximum baseline 36 km) for the final two

epochs. Our first epoch, on May 22, was a detection experiment, and we observed only in the 8–

12 GHz band. Having established the presence of radio emission, we observed over a broader range

of frequencies in the subsequent three epochs, using the 2–4 GHz, 4–8 GHz, and 8–12 GHz bands.

We used 3C 48 as a bandpass and flux density calibrator on May 22, and 3C 286 for the other three

epochs. We used the nearby extragalactic sources ICRF J204945.8+100314 (at 4–8 and 8–12 GHz)

and ICRF J203533.9+185705 (at 2–4 GHz) to determine the complex gain solutions, which were

interpolated to AT2019dsg. We used the Common Astronomy Software Application (CASA)105

Calibration pipeline (v5.4.1) to perform external gain calibration, and after removing residual radio

frequency interference, we imaged the data within CASA, using Briggs weighting with a robust

parameter of 1. We split each baseband into multiple frequency bins for imaging (1 GHz bins
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Figure S2: X-ray count map from XMM-Newton (50 days after discovery). The green circle indi-

cates the source region, while the red circular region was used to measure the background. The

best-fit position derived from optical observations is spatially-coincident with the center of the

X-ray source region.

27



0.30 0.40 0.50 0.60 0.70 0.80 0.90

10−4

10−3

n
or

m
al

iz
ed

co
u

nt
s

s−
1

ke
V
−

1
cm
−

2

blackbody (0.072± 0.005 keV)

XMM 2019 May 30

0.30 0.40 0.50 0.60 0.70 0.80 0.90
Energy (keV)

1

2

R
at

io
[D

at
a/

M
od

el
]

Figure S3: Soft X-ray spectrum of AT2019dsg measured by XMM-Newton, fitted with an absorbed

disk blackbody model. Error bars represent 1σ intervals.
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above 4 GHz, and 0.5 GHz bins below that) to provide better sampling of the broadband spectrum,

allowing more precise constraints on the turnover frequency, and better spectral modelling.

Radio observations of the field of AT2019dsg were also conducted using the AMI Large

Array (AMI-LA)106, 107. AMI-LA is a radio interferometer comprised of eight 12.8m-diameter an-

tennas producing 28 baselines that range from 18m up to 110m, which operates with a 5 GHz

bandwidth around a central frequency of 15.5 GHz. We observed AT2019dsg on several epochs

(see Table S8) for four hours each. Initial data reduction, editing, and calibration of the phase,

and flux density, was carried out using reduce_dc, a customized AMI data reduction soft-

ware package108. Phase calibration was conducted using short interleaved observations of ICRF

J205135.5+174336, while for absolute flux density calibration we used 3C 286. Additional flag-

ging and imaging were performed using CASA. All of our observations showed a source consistent

with the location of AT2019dsg. We used the CASA task IMFIT to find the source flux and posi-

tion.

Further observations of AT2019dsg were conducted with the South African MeerKAT tele-

scope, on 2019 June 19, July 29, October 5, and November 30, with each session being ∼2 h

long. We used ICRF J193925.0-634245 as a flux-density calibrator, and ICRF J213032.8+050217

as a phase and amplitude calibrator. The initial calibration was done using the IDIA MeerKAT

pipelinec, which is implemented in CASA. The observed band was 860 MHz wide and centred

on 1280 MHz. We imaged the whole primary beam (∼ 1◦) using the CLEAN algorithm (CASA:

tclean) in order to remove sidelobes from the many (unrelated) sources within the primary beam.

The total CLEAN flux density in the field was ∼1 Jy, and the peak brightness in the images was

about 48 mJy beam−1 (not related to AT2019dsg). Since residual small calibration errors domi-

nated the image rms background in the initial images, we self-calibrated the data in both phase and

amplitude, with the mean amplitude gain being fixed at unity to minimise any drifting of the flux-

density scale. The resolution is slightly different in each epoch, but was ∼11′′ north-south, and

∼6′′ east-west. Image rms background levels also varied, ranging between 25 and 32 µJy beam−1.

There was no sign of extended emission or confusing sources near AT2019dsg. The flux density

was determined by fitting an elliptical Gaussian with the same geometry as the restoring beam to

the images.

The measured flux densities from our radio observations are reported in Table S8. For all

chttps://idia-pipelines.github.io/docs/processMeerKAT
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radio observations, the reported uncertainties include both the image background rms and a 5%

fractional calibration uncertainty, added in quadrature.

7 Gamma-Ray Observations

We analysed data from the Fermi Large Area Telescope (Fermi-LAT)109, sensitive to gamma rays

with energies from 20 MeV to greater than 300 GeV. During its sky-survey operations, the pair-

conversion telescope Fermi-LAT scans the entire sky about every three hours, and can monitor

the variable gamma-ray sky over short and long timescales. We studied the region of AT2019dsg

in three different time intervals, motivated by the multi-wavelength behavior of the source. The

first interval (G1) includes 130 days of observations that include the peak of the optical emis-

sion from 2019 April 4 to 2019 August 12. The second one (G2) spans 2019 August 12 to

2019 November 20 and covers the UV plateau and the peak of the radio emission. The third

period (G3) integrates the whole period between the start of G1 up to 2020 January 31. We use

the photon event class from Pass 8 Fermi-LAT data (P8R3 SOURCE), and select a 15◦ × 15◦

Region of Interest (RoI) centered on the AT2019dsg position derived from optical observations,

with photon energies from 100 MeV to 800 GeV. We use the corresponding LAT instrument re-

sponse functions P8R3 SOURCE V2 with the recommended spectral models gll iem v07.fits and

iso P8R3 SOURCE V2 v1.txt for the Galactic diffuse and isotropic component respectively. To

minimise contamination from gamma rays produced in the Earth’s upper atmosphere, we require

an instrumental zenith angle θ < 90◦ for all events, in addition to the standard data quality cuts sug-

gested by the Fermi Science Support Centerd. We perform a likelihood analysis, binned spatially

with 0.1◦ resolution and 10 logarithmically-spaced bins per energy decade, using the Fermi-LAT

ScienceTools package (fermitools v1.0.1) along with the fermipy package v0.17.4110.

A search was already performed within the 90% error region during both the 1-day and 1-

month period prior to the arrival of the high-energy neutrino111. No new gamma-ray source was

identified, and there was no significant (≥ 5σ) detection for any source from the fourth Fermi-

LAT point source catalog (4FGL112). Here, we specifically test a point-source hypothesis at the

position of AT2019dsg under the assumption of a power-law spectrum. We find TSe = 0 for all

dhttps://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/data_preparation.

html
eTS is twice the difference in the maximum logL of an ROI model with and without the source, where L is the

likelihood of the data given the model.
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intervals. Upper limits for the energy flux (integrated over the whole analysis energy range) have

been derived for a power-law spectrum (dN/dE ∝ E−Γ) with photon power-law index Γ = 2 and

are listed in Table S3 along with the respective time intervals.

In all three time intervals, we detect a new, non-catalogued gamma-ray emitter in the RoI at

a significance ≥ 5σ. This source lies just outside the IC191001A 90% error region, as indicated in

Figure S4. The source, which we label Fermi-J2113.8+1120, is likely the gamma-ray counterpart

of the radio-loud object GB6 J2113+1121, classified as a flat-spectrum radio quasar with redshift

z = 1.63113. The detection of an unrelated gamma-ray blazar within the neutrino uncertainty

area is consistent with the background estimation. On average 1.5 4FGL gamma-ray blazars are

expected in 20 sq. deg. In addition, a lightcurve analysis (Figure S5) reveals that the source is not

significantly detected in gamma rays when IC191001A was detected. The lag between the closest

significant detection of the source and the neutrino arrival was approximately ∼1 month. Such a

lag is disfavored by recent studies on the temporal behavior of hadronic processes in blazars114, 115,

suggesting that the blazar is unlikely producing the neutrino. Hence, given the lack of any obvious

connection between the gamma-ray observations of Fermi-J2113.8+1120 and IC191001A, we do

not discuss this source any further.

The HAWC observatory also reported a search for transient gamma-ray emission on short

timescales in the localisation of IC191001A116, and set a limit for their most significant position

at 95% confidence of E2dN/dE = 3.51 × 10−13(E/TeV)−0.3 TeV cm−2 s−1, in the energy range

300 GeV to 100 TeV, for the period from 2019 September 30 05:46:52 UTC to 2019 October 02

06:03:29 UTC. We note that this search covered a relatively large region of the sky, and thus had

a large associated trial factor. A dedicated search at the position of AT2019dsg would be more

sensitive, especially one that additionally targeted the longer period over which the central engine

is active.
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Interval MJD Start MJD Stop UL
(erg cm−2 s−1)

G1 58577 58707 2.6 ×10−12

G2 58707 58807 1.2 ×10−11

G3 58577 58879 2.0 ×10−12

Table S3: Gamma-ray energy flux upper-limits for a point-source with power-law index Γ=2.0 at

the position of AT2019dsg integrated over the analysis energy range 0.1-800 GeV.
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Figure S4: LAT counts map of the Region Of Interest (ROI) in the integrated search period G3,

showing the IC191001A 90% localisation region in green. The neutrino best-fit position is marked

with a green ‘×’. Two gamma-ray sources are significantly detected (≥ 5 σ) in the ROI but outside

the neutrino uncertainty region as marked with white crosses. There is no excess consistent with

the position of AT2019dsg.
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Figure S5: LAT lightcurve in the 0.1-800 GeV energy range for the source Fermi-J2113.8+1120

in the time interval G3, with evenly spaced binning of 28 days. Vertical error bars represent 1σ

intervals, horizontal bars denote bin width. 2σ upper limits are shown for bins with TS≤9. The

orange dashed vertical line marks the arrival time of IC-191001A. Since this source lies outside

the reported 90% error region (see Figure S4), and given that the LAT lightcurve shows no obvious

correlation with the neutrino arrival time, we conclude that it is unlikely to be associated with the

neutrino.
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8 Radio Analysis

The four radio spectral energy distributions (SEDs) for AT2019dsg can be described by syn-

chrotron emission from a population of relativistic electrons. We assume that the electrons are

accelerated into a power-law distribution in energy dNe/dγ ∝ γ−p. We expect that the lowest-

energy electrons emit their synchrotron radiation below the synchrotron-self absorption frequency

with negligible free-free absorption, and in this case the shape of the radio SED is determined by

just 3 free parameters, the electron power-law index p, the magnetic field B and the source radius

R:

Fν,sync(t) ∝
jν(B(t), p)

κν(B(t), p)
(1− e−κνR(t)) (1)

here jν and κν are the emission and absorption coefficients, respectively. The normalization of

Eq. 1 depends on the source geometry and the so-called microphysical parameters (εe, εB) which

will be treated separately below. Similar to the case of radio-emitting TDE ASASSN-14li28, 117,

we might expect some steady radio emission from the host galaxy. This baseline flux density is

parameterised as

Fν,baseline = Fbaseline

( ν

1.28 GHz

)αbaseline

(2)

such that the total flux density is given by

Fν,total = Fν,baseline + Fν,sync (3)

The magnetic field and radius are allowed to change for each epoch, while Fbaseline, αbaseline and p

are assumed to be constant during our radio observations.

Using Eq. 3 to describe the synchrotron spectrum, we apply a Markov chain Monte Carlo

approach118 to determine a posterior probability distribution of the electron power-law index, as

well as the peak frequency (νpeak) and peak flux density (Fpeak) for each radio epoch (Table S4).

We allow the measurement variance to be underestimated by some fractional amount f (see, e.g.,

ref. 119).

The last epoch of VLA observations, which has the best coverage of the optically thin part

of the radio SED, yields p = 3.0 ± 0.15 and we use this as a Gaussian prior when fitting all data

simultaneously. We use a flat (uninformative) priors for the other parameters and we cap αbaseline

at 0 and Fbaseline at 0.1 mJy (because the baseline flux density should be optically thin, α < 0, and

cannot exceed the observed post-TDE radio flux density). For the time-independent parameters we

find: F baseline = 0.09± 0.01 mJy, αbaseline = −0.2± 0.1, p = 2.9± 0.1, and ln f = −3.4. We find
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no significant covariance between the baseline flux density parameters and the peak frequency or

peak flux density.

To estimate the radius and energy of the radio-emitting region from the posterior distribution

of Fpeak, νpeak, and p, we use the scaling relations from Barniol Duran, Nakar, & Piran (2013)26.

These relations depend on the electron power-law index and we propagate the uncertainty on p

into our estimates of Req and Eeq. Additional assumptions for the geometry and the microphysical

parameters are required. For the geometry of the outflow, our default model is two conical emitting

regions with half-opening angles φ =30 deg, which yield an area covering factor fA = 1−cosφ =

0.13 and a volume factor fV = 2/(3 tanφ) = 1.15 (here we follow the convention26 that fA = 1

and fV = 4/3 parameterise a spherical outflow in the Newtonian limit).

The equipartition energy, Eeq is obtained under the assumption that the system contains only

electrons and magnetic fields (both uniformly-distributed) and that the total energy is minimised for

EB = (6/11)Ee. However we expect that protons carry the bulk of the energy and we parameterise

this energy in protons by εe ≡ Ee/Ep with Ep the total energy in relativistic protons. After this ad-

justment, Eeq is increased by (1 + 1/εe)
11/(13+2p). Finally, for systems that are not in equipartition,

the energy is larger by a factor26 (11/17)η−6/17 + (6/17)η11/17, with η ≡ (εB/(1 − εB))/(6/11),

with εB the fraction of total energy that is carried by the magnetic field. Motivated by observations

of GRB afterglows120, 121, supernovae25 and the relativistic TDE Swift J1644+5724, we use εe = 0.1

and εB = 10−3.

From equipartition magnetic field strength inferred from the first epoch of radio observation

(see Table S5) we estimate that the cooling time of the electrons that emit at 10 GHz is 500 days.

For the last epoch, the field strength has decreased by a factor of 3 and now the cooling time is an

order of magnitude longer. We can thus conclude that, unless the magnetic field energy density is

much higher than the equipartition value (εB/εe � 1), the observed slope of the optically thin part

of the radio SEDs reflects the intrinsic power-law index of the electrons.

From our synchrotron analysis we also obtain the number density of relativistic electrons,

which in turn yields a lower limit to the total particle density in the radio region. This estimate

is relevant for the pp scenario of pion production, which requires a target density of at least ∼
108 cm−3 to have sufficient optical depth. For the energy and radius of last radio epoch, which was

obtained a few days after the neutrino detection, we find an electron density of 103.4±0.1 cm−3 (see

Table S5).
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∆t Fpeak νpeak

days log10 mJy log10 GHz

42 0.41± 0.04 14.8± 1.0

70 0.71± 0.04 12.0± 0.5

120 1.20± 0.04 9.4± 0.3

178 1.24± 0.04 5.4± 0.1

Table S4: Peak frequency and peak flux density of the radio observations. The time (∆t) is mea-

sured in the observer frame relative to MJD 58582.8, the date of discovery for AT2019dsg.

equipartition: Ee/EB = 11/6 (no protons) fiducial model: εe = 0.1; εB = 10−3

∆t Req Eeq Beq ne,eq R E B ne

days erg cm G cm−3 cm erg G cm−3

Conical:
fA=0.13

fV =1.15

42 16.29(0.02) 47.9(0.1) −0.27(0.05) 3.5(0.1) 16.18(0.03) 49.4(0.1) −0.68(0.05) 4.4(0.1)

70 16.47(0.02) 48.3(0.1) −0.36(0.04) 3.3(0.1) 16.37(0.02) 49.7(0.1) −0.78(0.04) 4.2(0.1)

120 16.68(0.02) 48.7(0.1) −0.49(0.04) 3.0(0.1) 16.57(0.02) 50.1(0.1) −0.91(0.04) 3.9(0.1)

178 16.93(0.02) 48.9(0.1) −0.73(0.05) 2.6(0.1) 16.82(0.02) 50.3(0.1) −1.16(0.04) 3.4(0.1)

Spherical:
fA=1

fV =4/3

42 15.92(0.02) 47.4(0.1) −0.00(0.04) 4.0(0.1) 15.81(0.03) 48.8(0.1) −0.41(0.04) 4.9(0.1)

70 16.10(0.02) 47.8(0.1) −0.10(0.04) 3.8(0.1) 16.00(0.02) 49.2(0.1) −0.52(0.04) 4.7(0.1)

120 16.31(0.02) 48.2(0.1) −0.22(0.04) 3.6(0.1) 16.20(0.02) 49.6(0.1) −0.65(0.04) 4.4(0.1)

178 16.56(0.02) 48.4(0.1) −0.47(0.04) 3.1(0.1) 16.45(0.02) 49.8(0.1) −0.89(0.04) 3.9(0.1)

Table S5: Properties of radio-emitting region inferred from the synchrotron peak flux and peak

frequency (Table S4), where R is the region radius, E is the non-thermal energy, B is the magnetic

field strength and ne is the density of non-thermal electrons. Except for ∆t, all quantities are

reported as log10 with the uncertainty (68% CL) listed in brackets.
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9 Neutrino Production

The Hillas criterion31 for a system of magnetic field strength B and physical radius R can be

expressed as31:

Emax

PeV
≈ 1600× B

Gauss
× R

1016 cm
× βZ (4)

where Z is the particle charge, β ∼ 0.2 is the outflow velocity in units of c and E is the maximum

charged-particle energy. In order for particle acceleration to occur, the timescale required for

particle acceleration must be shorter than the associated particle cooling timescale. Previous work

has found this condition can be satisfied in TDEs for relevant energies8, 9, although a detailed

calculation is beyond the scope of this work.

These accelerated protons then need sufficient target density. For a photon target, with pγ

pion production via the ∆ resonance, we expect that neutrino production will occur above a thresh-

old:

EγEp ∼ Γ20.16 GeV2 (5)

With this constraint, we can derive the necessary photon energies required for a target to produce

IC191001A. Taking the reconstructed neutrino energy of ∼0.2 PeV directly, we find a threshold

photon target of Eγ >40 eV. However, these reconstructed neutrino energies typically have upper

bounds an order of magnitude or more above the central estimate2, so the true neutrino energy

could be substantially higher. For example, with a true neutrino energy of ∼1 PeV, we would

instead require photons Eγ >8 eV for pion production.

During pion production roughly half of the energy will be lost through the neutrino-less π0

channel122, while for the charged pion channel energy is shared roughly equally among the decay

products π± → e± +
(−)

νe +
−
νµ + νµ

123. Thus ∼3/8 of the pion energy is transferred to neutrinos,

with a 1:2:0 flavour composition at source. However, across the cosmological baseline travelled,

neutrino oscillations will lead to a mixed 1:1:1 composition on Earth. The IceCube realtime event

selection is dominated by muon neutrinos, a channel which will carry no more than ∼1/8 of the

pionic energy. Thus we find:
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Eν ≈ fπ
Ep
8

(6)

where fπ ≤ 1 is the conversion efficiency of proton energy to pion energy. We can derive the mean

free path, λ, for a proton:

λ =
1

σpγnγ
(7)

with cross section σpγ ∼ 5 × 10−28 cm2 and photon number density nγ . For a blackbody of

temperature TBB ∼ 104.6 K, the mean free path for the parent proton of a 1 PeV neutrino is

λ ∼ 2× 1013 cm. Accounting for the fact that each proton interaction will lead to a typical energy

reduction of 20%, we then find:

fπ(x) = 1− e(−0.2x
λ ) (8)

for path x. Equating x with the radius of the UV photosphere x ≈ 1014.6cm, we then find that

each proton or neutron will typically undergo ∼ 10 interactions, which would represent a high

efficiency fπ ∼ 0.9. We caution that this estimate is only approximate, and that detailed numerical

simulations are required to accurately calculate the pion production efficiency122.

We then calculate the effective area for a single high-energy neutrino, under the assumption

of a mono-energetic neutrino spectrum which approximates the expectation for pγ production.

The effective area for IceCube varies from 50-200 m2 for a 0.2-10 PeV neutrino energy. Below 1

PeV, this corresponds to a roughly-constant threshold of 6 × 10−4 erg cm−2 for an expectation of

one neutrino alert. Given the redshift of AT2019dsg, we find a required total energy in neutrinos

Eν ≈ 4× 1051 erg to produce a single neutrino alert. We can thus express the expected number of

detected neutrinos as:

Nν ≈ 0.03× Eν
1050erg

(9)

This expectation would also be valid for any power-law distribution in the same energy range.

38



Supplementary References

35. Sfaradi, I. et al. A possible radio detection of the TDE candidate AT2019DSG by AMI-LA.

The Astronomer’s Telegram 12798, 1 (2019).

36. Perez-Torres, M. et al. Unambiguous radio detection of the tidal disruption event AT2019dsg

with e-MERLIN. The Astronomer’s Telegram 12960, 1 (2019).

37. Graham, M. J. et al. The Zwicky Transient Facility: Science Objectives. PASP 131, 078001

(2019). 1902.01945.

38. Coughlin, M. W. et al. 2900 Square Degree Search for the Optical Counterpart of Short

Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility. PASP 131, 048001

(2019). 1901.11385.

39. Stein, R. IceCube-200107A: IceCube observation of a high-energy neutrino candidate event.

GCN Circular 26655 (2020).

40. Blaufuss, E. IceCube-190503A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 24378 (2019).

41. Stein, R. et al. Optical follow-up of IceCube-190503A with ZTF. The Astronomer’s Telegram

12730, 1 (2019).

42. Blaufuss, E. IceCube-190629A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 24910 (2019).

43. Stein, R. et al. Optical follow-up of IceCube-190619A with ZTF. The Astronomer’s Telegram

12879, 1 (2019).

44. Stein, R. IceCube-190730A - IceCube observation of a high-energy neutrino candidate event.

GCN Circular 25225 (2019).

45. Stein, R. et al. Optical follow-up of IceCube-190730A with ZTF. The Astronomer’s Telegram

12974, 1 (2019).

46. Blaufuss, E. IceCube-190922B - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 25806 (2019).

39

1902.01945
1901.11385


47. Stein, R., Franckowiak, A., Kowalski, M. & Kasliwal, M. A candidate supernova coincident

with IceCube-190922B from ZTF. The Astronomer’s Telegram 13125, 1 (2019).

48. Stein, R., Franckowiak, A., Kowalski, M. & Kasliwal, M. IceCube-190922B: Identification

of a Candidate Supernova from the Zwicky Transient Facility. GCN Circular 25824 (2019).

49. Stein, R., Franckowiak, A., Necker, J. & Suvi Gezari, S. v. IceCube-191001A: Candidate

Counterparts with the Zwicky Transient Facility. GCN Circular 25929 (2019).

50. Stein, R. & Reusch, S. IceCube-200107A: No candidates from the Zwicky Transient Facility.

GCN Circular 26667 (2020).

51. Stein, R. IceCube-200109A: IceCube observation of a high-energy neutrino candidate event.

GCN Circular 26696 (2020).

52. Reusch, S. & Stein, R. IceCube-200109A: Candidate Counterparts from the Zwicky Tran-

sient Facility. GCN Circular 26747 (2020).

53. Lagunas Gualda, C. IceCube-200117A: IceCube observation of a high-energy neutrino can-

didate event. GCN Circular 26802 (2020).

54. Reusch, S. & Stein, R. IceCube-200117A: Candidate Counterpart from the Zwicky Transient

Facility. GCN Circular 26813 (2020).

55. Reusch, S. & Stein, R. IceCube-200117A: One Additional Candidate Counterpart from the

Zwicky Transient Facility. GCN Circular 26816 (2020).

56. Kopper, C. Retraction of IceCube GCN/AMON NOTICE 71165249 130949. GCN Circular

22669 (2018).

57. Blaufuss, E. IceCube-181031A retraction. GCN Circular 23398 (2018).

58. Blaufuss, E. Retraction of IceCube GCN/AMON NOTICE 36142391 132143. GCN Circular

23876 (2019).

59. Blaufuss, E. IceCube 41485283 132628.amon retraction. GCN Circular 24674 (2019).

60. Blaufuss, E. IceCube-180908A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 23214 (2018).

40



61. Taboada, I. IceCube-181014A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 23338 (2018).

62. Blaufuss, E. IceCube-190124A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 23785 (2019).

63. Santander, M. IceCube-190704A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 24981 (2019).

64. Blaufuss, E. IceCube-190712A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 25057 (2019).

65. Santander, M. IceCube-190819A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 25402 (2019).

66. Blaufuss, E. IceCube-191119A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 26258 (2019).

67. Stein, R. IceCube-200227A: IceCube observation of a high-energy neutrino candidate event.

GCN Circular 27235 (2020).

68. Stein, R. IceCube-191215A - IceCube observation of a high-energy neutrino candidate event.

GCN Circular 26435 (2019).

69. Kopper, C. IceCube-190331A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 24028 (2019).

70. Kopper, C. IceCube-190504A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 24392 (2019).

71. Taboada, I. IceCube-190921A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 23918 (2019).

72. Blaufuss, E. IceCube-190629A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 24910 (2019).

73. Stein, R. IceCube-190922A - IceCube observation of a high-energy neutrino candidate event.

GCN Circular 25802 (2019).

41



74. Blaufuss, E. IceCube-191122A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 26276 (2019).

75. Stein, R. IceCube-191204A - IceCube observation of a high-energy neutrino candidate event.

GCN Circular 26341 (2019).

76. Santander, M. IceCube-191231A: IceCube observation of a high-energy neutrino candidate

event. GCN Circular 26620 (2019).

77. Lagunas Gualda, C. IceCube-200120A: IceCube observation of a high-energy neutrino can-

didate event. GCN Circular 26832 (2020).

78. Blaufuss, E. IceCube-200120A: Event likely due to background. GCN Circular 26874
(2020).

79. Blaufuss, E. IceCube-181023A - IceCube observation of a high-energy neutrino candidate

event. GCN Circular 23375 (2018).

80. Masci, F. J. et al. The Zwicky Transient Facility: Data Processing, Products, and Archive.

PASP 131, 018003 (2019). 1902.01872.

81. Patterson, M. T. et al. The Zwicky Transient Facility Alert Distribution System. PASP 131,

018001 (2019). 1902.02227.

82. Nordin, J. et al. Transient processing and analysis using AMPEL: alert management, pho-

tometry, and evaluation of light curves. A&A 631, A147 (2019). 1904.05922.

83. Mahabal, A. et al. Machine Learning for the Zwicky Transient Facility. PASP 131, 038002

(2019). 1902.01936.

84. Soumagnac, M. T. & Ofek, E. O. catsHTM: A Tool for Fast Accessing and Cross-matching

Large Astronomical Catalogs. PASP 130, 075002 (2018). 1805.02666.

85. Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey proper-

ties. A&A 616, A1 (2018). 1804.09365.

86. Tachibana, Y. & Miller, A. A. A Morphological Classification Model to Identify Unresolved

PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline. PASP 130, 128001

(2018). 1902.01935.

42

1902.01872
1902.02227
1904.05922
1902.01936
1805.02666
1804.09365
1902.01935


87. Chambers, K. C. et al. The Pan-STARRS1 Surveys. arXiv e-prints arXiv:1612.05560 (2016).

1612.05560.

88. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description

and Initial On-orbit Performance. AJ 140, 1868–1881 (2010). 1008.0031.

89. Steele, I. A. et al. The Liverpool Telescope: performance and first results, vol. 5489 of Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 679–692 (2004).

90. Blagorodnova, N. et al. The SED Machine: A Robotic Spectrograph for Fast Transient

Classification. PASP 130, 035003 (2018).

91. Rigault, M. et al. Fully automated integral field spectrograph pipeline for the SEDMachine:

pysedm. A&A 627, A115 (2019).

92. Fremling, C. et al. PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-

mass progenitors in NGC 5806. A&A 593, A68 (2016). 1606.03074.

93. van Velzen, S. On the Mass and Luminosity Functions of Tidal Disruption Flares: Rate

Suppression due to Black Hole Event Horizons. ApJ 852, 72 (2018). 1707.03458.

94. Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120,

95–142 (2005). astro-ph/0507413.

95. Gehrels, N. et al. The Swift Gamma-Ray Burst Mission. ApJ 611, 1005–1020 (2004).

astro-ph/0405233.

96. van Velzen, S., Mendez, A. J., Krolik, J. H. & Gorjian, V. Discovery of Transient Infrared

Emission from Dust Heated by Stellar Tidal Disruption Flares. ApJ 829, 19 (2016). 1605.

04304.

97. Lu, W., Kumar, P. & Evans, N. J. Infrared emission from tidal disruption events - probing the

pc-scale dust content around galactic nuclei. MNRAS 458, 575–581 (2016). 1512.00020.

98. Miller, J. S. & Stone, R. P. S. Lick Obs. Tech. Rep. 66 (Santa Cruz: Lick Obs., 1993).

99. Oke, J. B. et al. The Keck Low-Resolution Imaging Spectrometer. PASP 107, 375–+ (1995).

100. Garcia-Rissmann, A. et al. An atlas of calcium triplet spectra of active galaxies. MNRAS

359, 765–780 (2005). astro-ph/0502478.

43

1612.05560
1008.0031
1606.03074
1707.03458
astro-ph/0507413
astro-ph/0405233
1605.04304
1605.04304
1512.00020
astro-ph/0502478


101. Burrows, D. N. et al. The Swift X-Ray Telescope. Space Sci. Rev. 120, 165–195 (2005).

astro-ph/0508071.

102. Jansen, F. et al. XMM-Newton observatory. I. The spacecraft and operations. A&A 365,

L1–L6 (2001).

103. HI4PI Collaboration et al. HI4PI: A full-sky H I survey based on EBHIS and GASS. A&A

594, A116 (2016). 1610.06175.

104. Arnaud, K. A. XSPEC: The First Ten Years, vol. 101 of Astronomical Society of the Pacific

Conference Series, 17 (1996).

105. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA Architecture

and Applications. In Shaw, R. A., Hill, F. & Bell, D. J. (eds.) Astronomical Data Analysis

Software and Systems XVI, vol. 376 of Astronomical Society of the Pacific Conference Series,

127 (2007).

106. Zwart, J. T. L. et al. The Arcminute Microkelvin Imager. MNRAS 391, 1545–1558 (2008).

0807.2469.

107. Hickish, J. et al. A digital correlator upgrade for the Arcminute MicroKelvin Imager. MN-

RAS 475, 5677–5687 (2018). 1707.04237.

108. Perrott, Y. C. et al. AMI Galactic Plane Survey at 16 GHz - II. Full data release with extended

coverage and improved processing. MNRAS 453, 1396–1403 (2015). 1508.00741.

109. Atwood, W. B., Abdo, A. A., Ackermann, M. et al. The Large Area Telescope on the Fermi

Gamma-Ray Space Telescope Mission. ApJ 697, 1071–1102 (2009). 0902.1089.

110. Wood, M. et al. Fermipy: An open-source Python package for analysis of Fermi-LAT Data.

In 35th International Cosmic Ray Conference (ICRC2017), vol. 301 of International Cosmic

Ray Conference, 824 (2017). 1707.09551.

111. Garrappa, S. & Buson, S. Fermi-LAT Gamma-ray Observations of IceCube-191001A. GCN

Circular 25932 (2019).

112. The Fermi-LAT collaboration. Fermi Large Area Telescope Fourth Source Catalog. arXiv

e-prints arXiv:1902.10045 (2019). 1902.10045.

44

astro-ph/0508071
1610.06175
0807.2469
1707.04237
1508.00741
0902.1089
1707.09551
1902.10045


113. Pursimo, T. et al. The Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey.

III. Optical Identifications and New Redshifts. ApJ 767, 14 (2013). 1302.3409.
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122. Hümmer, S., Rüger, M., Spanier, F. & Winter, W. Simplified Models for Photohadronic

Interactions in Cosmic Accelerators. ApJ 721, 630–652 (2010). 1002.1310.

123. Waxman, E. & Bahcall, J. High energy neutrinos from astrophysical sources: An upper

bound. Phys. Rev. D 59, 023002 (1999). hep-ph/9807282.

45

1302.3409
1502.03950
1807.04275
1807.04275
1511.08803
1202.3665
1710.02145
1509.02922
1002.1310
hep-ph/9807282


Table S6: Photometry for AT2019dsg, measured by Swift-

UVOT, ZTF, LT (IOO) and SEDM. The time (∆t) is mea-

sured in the observer frame relative to MJD 58582.8, the date

of discovery for AT2019dsg.

∆t Band Flux [mJy] Flux Error [mJy] ν [1014 Hz] Instrument

34.02 i 0.19 0.02 4.23 LT (IOO)

38.76 i 0.19 0.02 4.23 LT (IOO)

47.32 i 0.17 0.02 4.23 LT (IOO)

67.26 i 0.13 0.01 4.23 LT (IOO)

0.00 r 0.09 0.01 4.96 ZTF

10.45 r 0.15 0.01 4.96 ZTF

18.10 r 0.19 0.02 4.96 ZTF

23.80 r 0.20 0.02 4.96 ZTF

43.70 r 0.19 0.02 4.96 ZTF

49.43 r 0.16 0.01 4.96 ZTF

52.28 r 0.17 0.02 4.96 ZTF

55.17 r 0.15 0.01 4.96 ZTF

58.98 r 0.15 0.01 4.96 ZTF

64.65 r 0.14 0.01 4.96 ZTF

67.50 r 0.13 0.01 4.96 ZTF

71.30 r 0.11 0.01 4.96 ZTF

72.23 r 0.12 0.01 4.96 ZTF

75.03 r 0.11 0.01 4.96 ZTF

76.11 r 0.11 0.01 4.96 ZTF

77.02 r 0.12 0.01 4.96 ZTF

78.92 r 0.11 0.01 4.96 ZTF

81.71 r 0.11 0.01 4.96 ZTF

93.09 r 0.10 0.01 4.96 ZTF

97.01 r 0.10 0.01 4.96 ZTF

103.60 r 0.09 0.01 4.96 ZTF

104.62 r 0.09 0.01 4.96 ZTF
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∆t Band Flux [mJy] Flux Error [mJy] ν [1014 Hz] Instrument
106.44 r 0.08 0.01 4.96 ZTF

109.33 r 0.07 0.01 4.96 ZTF

115.05 r 0.07 0.01 4.96 ZTF

129.25 r 0.05 0.01 4.96 ZTF

163.38 r 0.05 0.01 4.96 ZTF

166.30 r 0.05 0.01 4.96 ZTF

167.13 r 0.05 0.00 4.96 ZTF

32.37 r 0.22 0.02 5.14 SEDM

34.01 r 0.19 0.02 5.14 LT (IOO)

38.76 r 0.17 0.02 5.14 LT (IOO)

47.32 r 0.16 0.01 5.14 LT (IOO)

23.79 g 0.20 0.02 6.67 ZTF

33.29 g 0.19 0.02 6.67 ZTF

43.76 g 0.18 0.02 6.67 ZTF

49.46 g 0.16 0.01 6.67 ZTF

49.48 g 0.17 0.02 6.67 ZTF

52.32 g 0.15 0.01 6.67 ZTF

55.16 g 0.15 0.01 6.67 ZTF

61.83 g 0.15 0.01 6.67 ZTF

64.68 g 0.12 0.01 6.67 ZTF

67.48 g 0.11 0.01 6.67 ZTF

76.06 g 0.10 0.01 6.67 ZTF

76.09 g 0.10 0.01 6.67 ZTF

78.95 g 0.10 0.01 6.67 ZTF

81.79 g 0.09 0.01 6.67 ZTF

87.48 g 0.08 0.01 6.67 ZTF

93.21 g 0.08 0.01 6.67 ZTF

100.70 g 0.08 0.01 6.67 ZTF

103.56 g 0.08 0.01 6.67 ZTF

104.59 g 0.07 0.01 6.67 ZTF

104.59 g 0.07 0.01 6.67 ZTF

104.60 g 0.07 0.01 6.67 ZTF
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∆t Band Flux [mJy] Flux Error [mJy] ν [1014 Hz] Instrument
104.64 g 0.07 0.01 6.67 ZTF

106.42 g 0.07 0.01 6.67 ZTF

120.79 g 0.05 0.01 6.67 ZTF

123.42 g 0.06 0.01 6.67 ZTF

135.90 g 0.04 0.00 6.67 ZTF

142.54 g 0.04 0.01 6.67 ZTF

156.79 g 0.03 0.01 6.67 ZTF

159.57 g 0.03 0.01 6.67 ZTF

163.42 g 0.03 0.00 6.67 ZTF

166.20 g 0.03 0.00 6.67 ZTF

166.22 g 0.03 0.00 6.67 ZTF

167.16 g 0.03 0.00 6.67 ZTF

168.12 g 0.03 0.00 6.67 ZTF

34.01 g 0.19 0.02 6.8 LT (IOO)

38.76 g 0.19 0.02 6.8 LT (IOO)

47.32 g 0.17 0.02 6.8 LT (IOO)

67.26 g 0.12 0.01 6.8 LT (IOO)

71.07 g 0.11 0.01 6.8 LT (IOO)

74.85 g 0.11 0.01 6.8 LT (IOO)

35.90 B 0.34 0.04 7.31 Swift-UVOT

39.59 B 0.24 0.06 7.31 Swift-UVOT

42.56 B 0.23 0.06 7.31 Swift-UVOT

45.53 B 0.22 0.06 7.31 Swift-UVOT

48.60 B 0.19 0.05 7.31 Swift-UVOT

51.21 B 0.21 0.05 7.31 Swift-UVOT

54.59 B 0.17 0.04 7.31 Swift-UVOT

67.65 B 0.26 0.06 7.31 Swift-UVOT

35.90 U 0.31 0.02 9.18 Swift-UVOT

39.59 U 0.27 0.04 9.18 Swift-UVOT

42.56 U 0.29 0.04 9.18 Swift-UVOT

45.53 U 0.31 0.03 9.18 Swift-UVOT

48.60 U 0.27 0.03 9.18 Swift-UVOT
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∆t Band Flux [mJy] Flux Error [mJy] ν [1014 Hz] Instrument
48.69 U 0.23 0.03 9.18 Swift-UVOT

51.02 U 0.23 0.03 9.18 Swift-UVOT

51.21 U 0.24 0.03 9.18 Swift-UVOT

54.59 U 0.23 0.02 9.18 Swift-UVOT

57.05 U 0.23 0.02 9.18 Swift-UVOT

59.89 U 0.18 0.02 9.18 Swift-UVOT

63.10 U 0.24 0.03 9.18 Swift-UVOT

67.65 U 0.18 0.03 9.18 Swift-UVOT

67.99 U 0.19 0.02 9.18 Swift-UVOT

88.18 U 0.15 0.03 9.18 Swift-UVOT

88.93 U 0.11 0.02 9.18 Swift-UVOT

93.09 U 0.11 0.02 9.18 Swift-UVOT

175.15 U 0.06 0.01 9.18 Swift-UVOT

179.76 U 0.05 0.02 9.18 Swift-UVOT

184.37 U 0.04 0.02 9.18 Swift-UVOT

35.90 UVW1 0.38 0.02 12.6 Swift-UVOT

39.59 UVW1 0.36 0.03 12.6 Swift-UVOT

42.56 UVW1 0.34 0.02 12.6 Swift-UVOT

45.52 UVW1 0.33 0.02 12.6 Swift-UVOT

48.60 UVW1 0.34 0.02 12.6 Swift-UVOT

48.69 UVW1 0.29 0.02 12.6 Swift-UVOT

51.02 UVW1 0.28 0.02 12.6 Swift-UVOT

51.21 UVW1 0.30 0.02 12.6 Swift-UVOT

54.59 UVW1 0.30 0.02 12.6 Swift-UVOT

57.05 UVW1 0.27 0.01 12.6 Swift-UVOT

59.89 UVW1 0.26 0.02 12.6 Swift-UVOT

63.10 UVW1 0.28 0.02 12.6 Swift-UVOT

67.65 UVW1 0.26 0.02 12.6 Swift-UVOT

67.99 UVW1 0.20 0.01 12.6 Swift-UVOT

88.17 UVW1 0.17 0.02 12.6 Swift-UVOT

88.93 UVW1 0.15 0.02 12.6 Swift-UVOT

93.09 UVW1 0.15 0.01 12.6 Swift-UVOT
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∆t Band Flux [mJy] Flux Error [mJy] ν [1014 Hz] Instrument
105.73 UVW1 0.13 0.01 12.6 Swift-UVOT

107.43 UVW1 0.11 0.01 12.6 Swift-UVOT

111.17 UVW1 0.10 0.01 12.6 Swift-UVOT

115.15 UVW1 0.11 0.01 12.6 Swift-UVOT

118.88 UVW1 0.12 0.01 12.6 Swift-UVOT

123.99 UVW1 0.09 0.01 12.6 Swift-UVOT

169.90 UVW1 0.06 0.01 12.6 Swift-UVOT

175.15 UVW1 0.06 0.01 12.6 Swift-UVOT

179.76 UVW1 0.06 0.01 12.6 Swift-UVOT

184.37 UVW1 0.04 0.01 12.6 Swift-UVOT

194.09 UVW1 0.07 0.02 12.6 Swift-UVOT

199.71 UVW1 0.07 0.01 12.6 Swift-UVOT

223.47 UVW1 0.03 0.01 12.6 Swift-UVOT

329.98 UVW1 0.03 0.01 12.6 Swift-UVOT

35.91 UVM2 0.37 0.01 14.15 Swift-UVOT

39.59 UVM2 0.35 0.02 14.15 Swift-UVOT

42.57 UVM2 0.35 0.02 14.15 Swift-UVOT

45.53 UVM2 0.35 0.02 14.15 Swift-UVOT

48.60 UVM2 0.32 0.01 14.15 Swift-UVOT

48.69 UVM2 0.33 0.02 14.15 Swift-UVOT

51.03 UVM2 0.26 0.01 14.15 Swift-UVOT

51.22 UVM2 0.29 0.02 14.15 Swift-UVOT

54.60 UVM2 0.28 0.01 14.15 Swift-UVOT

57.06 UVM2 0.28 0.01 14.15 Swift-UVOT

59.90 UVM2 0.26 0.01 14.15 Swift-UVOT

63.10 UVM2 0.25 0.01 14.15 Swift-UVOT

67.65 UVM2 0.26 0.02 14.15 Swift-UVOT

68.00 UVM2 0.20 0.01 14.15 Swift-UVOT

88.18 UVM2 0.15 0.01 14.15 Swift-UVOT

88.94 UVM2 0.18 0.01 14.15 Swift-UVOT

93.10 UVM2 0.13 0.01 14.15 Swift-UVOT

105.72 UVM2 0.12 0.01 14.15 Swift-UVOT
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∆t Band Flux [mJy] Flux Error [mJy] ν [1014 Hz] Instrument
107.43 UVM2 0.10 0.01 14.15 Swift-UVOT

111.16 UVM2 0.10 0.01 14.15 Swift-UVOT

115.15 UVM2 0.10 0.01 14.15 Swift-UVOT

118.87 UVM2 0.09 0.01 14.15 Swift-UVOT

123.99 UVM2 0.07 0.01 14.15 Swift-UVOT

169.91 UVM2 0.05 0.01 14.15 Swift-UVOT

175.16 UVM2 0.04 0.00 14.15 Swift-UVOT

179.77 UVM2 0.05 0.01 14.15 Swift-UVOT

184.38 UVM2 0.04 0.01 14.15 Swift-UVOT

194.09 UVM2 0.05 0.01 14.15 Swift-UVOT

199.72 UVM2 0.04 0.01 14.15 Swift-UVOT

223.48 UVM2 0.04 0.01 14.15 Swift-UVOT

329.97 UVM2 0.01 0.00 14.15 Swift-UVOT

35.90 UVW2 0.52 0.01 15.69 Swift-UVOT

39.59 UVW2 0.47 0.03 15.69 Swift-UVOT

42.56 UVW2 0.43 0.02 15.69 Swift-UVOT

45.53 UVW2 0.41 0.02 15.69 Swift-UVOT

48.60 UVW2 0.42 0.02 15.69 Swift-UVOT

48.69 UVW2 0.44 0.02 15.69 Swift-UVOT

51.02 UVW2 0.40 0.02 15.69 Swift-UVOT

51.21 UVW2 0.39 0.02 15.69 Swift-UVOT

54.59 UVW2 0.38 0.01 15.69 Swift-UVOT

57.05 UVW2 0.36 0.01 15.69 Swift-UVOT

59.89 UVW2 0.36 0.01 15.69 Swift-UVOT

63.10 UVW2 0.32 0.02 15.69 Swift-UVOT

67.65 UVW2 0.29 0.02 15.69 Swift-UVOT

68.00 UVW2 0.31 0.01 15.69 Swift-UVOT

88.18 UVW2 0.23 0.01 15.69 Swift-UVOT

88.93 UVW2 0.21 0.01 15.69 Swift-UVOT

93.10 UVW2 0.20 0.01 15.69 Swift-UVOT

105.72 UVW2 0.17 0.01 15.69 Swift-UVOT

107.43 UVW2 0.13 0.01 15.69 Swift-UVOT
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∆t Band Flux [mJy] Flux Error [mJy] ν [1014 Hz] Instrument
111.16 UVW2 0.12 0.01 15.69 Swift-UVOT

115.15 UVW2 0.15 0.01 15.69 Swift-UVOT

118.87 UVW2 0.13 0.01 15.69 Swift-UVOT

123.98 UVW2 0.10 0.01 15.69 Swift-UVOT

169.90 UVW2 0.06 0.01 15.69 Swift-UVOT

175.15 UVW2 0.06 0.00 15.69 Swift-UVOT

179.77 UVW2 0.06 0.01 15.69 Swift-UVOT

184.38 UVW2 0.07 0.01 15.69 Swift-UVOT

194.09 UVW2 0.06 0.01 15.69 Swift-UVOT

199.72 UVW2 0.04 0.01 15.69 Swift-UVOT

223.47 UVW2 0.06 0.01 15.69 Swift-UVOT

329.96 UVW2 0.02 0.00 15.69 Swift-UVOT

Table S7: X-ray observations of AT2019dsg from Swift-XRT

and XMM-Newton. The time (∆t) is measured in the ob-

server frame relative to MJD 58582.8. After ∆t = 65.96,

the source was not detected. For these observations, we in-

stead report 3σ upper limits.

∆t Energy Flux Flux Err Energy Range Instrument
[10−12 erg cm−2 s−1] [10−12 erg cm−2 s−1] [keV]

37.37 4.27 0.42 0.3-10 Swift-XRT

41.24 1.27 0.67 0.3-10 Swift-XRT

44.37 1.97 0.46 0.3-10 Swift-XRT

47.48 3.45 0.61 0.3-10 Swift-XRT

50.16 1.56 0.04 0.3-10 XMM-Newton

50.75 2.40 0.34 0.3-10 Swift-XRT

53.36 1.30 0.26 0.3-10 Swift-XRT

57.01 0.18 0.10 0.3-10 Swift-XRT

59.6 0.78 0.23 0.3-10 Swift-XRT

62.59 0.38 0.15 0.3-10 Swift-XRT

65.96 0.49 0.23 0.3-10 Swift-XRT
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∆t Energy Flux Flux Err Energy Range Instrument
[10−12 erg cm−2 s−1] [10−12 erg cm−2 s−1] [keV]

70.94 0.37 - 0.3-10 Swift-XRT

92.72 0.46 - 0.3-10 Swift-XRT

97.49 0.34 - 0.3-10 Swift-XRT

110.76 0.78 - 0.3-10 Swift-XRT

112.56 0.96 - 0.3-10 Swift-XRT

116.48 0.79 - 0.3-10 Swift-XRT

120.67 0.64 - 0.3-10 Swift-XRT

124.59 0.66 - 0.3-10 Swift-XRT

129.96 0.84 - 0.3-10 Swift-XRT

146.44 2.99 - 0.3-10 Swift-XRT

149.09 0.98 - 0.3-10 Swift-XRT

150.64 0.81 - 0.3-10 Swift-XRT

178.23 0.66 - 0.3-10 Swift-XRT

183.68 0.30 - 0.3-10 Swift-XRT

196.16 0.09 - 0.3-10 XMM-Newton

Table S8: Radio observations of AT2019dsg from MeerKAT,

VLA, and AMI-LA, grouped into quasi-simultaneous

epochs. The time (∆t) is measured in the observer frame rel-

ative to MJD 58582.8, the date of discovery for AT2019dsg.

∆t ν [GHz] Flux density [mJy] Flux Err [mJy] Instrument
42 8.49 0.29 0.04 VLA

42 9.51 0.41 0.05 VLA

42 10.49 0.44 0.05 VLA

42 11.51 0.41 0.05 VLA

41 15.5 0.46 0.06 AMI-LA

70 1.4 0.1 0.02 MeerKAT

70 3.5 0.1 0.03 VLA

70 4.49 0.32 0.05 VLA
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∆t ν [GHz] Flux density [mJy] Flux Err [mJy] Instrument
70 5.51 0.32 0.05 VLA

70 6.49 0.44 0.05 VLA

70 7.51 0.56 0.06 VLA

70 8.49 0.68 0.06 VLA

70 9.51 0.73 0.07 VLA

70 10.49 0.76 0.07 VLA

70 11.51 0.77 0.07 VLA

71 15.5 0.73 0.1 AMI-LA

111 1.4 0.11 0.02 MeerKAT

120 2.24 0.25 0.08 VLA

120 2.76 0.34 0.07 VLA

120 3.18 0.26 0.06 VLA

120 3.69 0.42 0.06 VLA

120 4.74 0.7 0.06 VLA

120 5.76 0.83 0.07 VLA

120 6.69 0.99 0.08 VLA

120 7.71 1.12 0.09 VLA

120 8.49 1.19 0.09 VLA

120 9.51 1.24 0.09 VLA

120 10.14 1.31 0.1 VLA

120 11.16 1.36 0.1 VLA

119 15.5 0.98 0.11 AMI-LA

179 1.4 0.15 0.02 MeerKAT

178 2.24 0.35 0.07 VLA

178 2.76 0.74 0.08 VLA

178 3.24 0.92 0.08 VLA

178 3.76 1.03 0.09 VLA

178 4.74 1.35 0.1 VLA

178 5.76 1.38 0.1 VLA

178 6.69 1.28 0.09 VLA

178 7.71 1.11 0.08 VLA

178 8.49 1.07 0.08 VLA
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∆t ν [GHz] Flux density [mJy] Flux Err [mJy] Instrument
178 9.51 0.92 0.07 VLA

178 10.14 0.88 0.07 VLA

178 11.16 0.78 0.07 VLA

179 15.5 0.68 0.08 AMI-LA

235 1.4 0.18 0.03 MeerKAT

236 15.5 0.5 0.06 AMI-LA
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