1,900 research outputs found

    Analytical modeling of open-Circuit air-Gap field distributions in multisegment and multilayer interior permanent-magnet machines

    Get PDF
    We present a simple lumped magnetic circuit model for interior permanent-magnet (IPM) machines with multisegment and multilayer permanent magnets. We derived analytically the open-circuit air-gap field distribution, average air-gap flux density, and leakage fluxes. To verify the developed models and analytical method, we adopted finite-element analysis (FEA). We show that for prototype machines, the errors between the FEA and analytically predicted results are 1% for multisegment IPM machines and 2% for multilayer IPM machines. By utilizing the developed lumped magnetic circuit models, the IPM machines can be optimized for maximum fundamental and minimum total harmonic distortion of the air-gap flux density distribution

    Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines

    Get PDF
    A general analytical technique predicts the magnetic field distribution in brushless permanent magnet machines equipped with surface-mounted magnets. It accounts for the effects of both the magnets and the stator windings. The technique is based on two-dimensional models in polar coordinates and solves the governing Laplacian/quasi-Poissonian field equations in the airgap/magnet regions without any assumption regarding the relative recoil permeability of the magnets. The analysis works for both internal and external rotor motor topologies, and either radial or parallel magnetized magnets, as well as for overlapping and nonoverlapping stator windings. The paper validates results of the analytical models by finite-element analyses, for both slotless and slotted motor

    Acoustic noise radiated by PWM-controlled induction machine drives

    Get PDF
    This paper investigates the acoustic noise radiated from two nominally identical induction motors when fed from sinusoidal, and asymmetric regular sampling subharmonic and space-vector pulsewidth modulation (PWM) converters. The theory for analyzing the noise spectrum is developed further to account for the interaction between the motor and the drive. It is shown that manufacturing tolerances can result in significant differences in the noise level emitted from nominally identical motors, and that mechanical resonances can result in extremely high noise emissions. Such resonances can be induced by stator and rotor slot air-gap field harmonics due to the fundamental component of current, and by the interaction between the airgap field harmonics produced by the fundamental and the PWM harmonic currents. The significance of the effect of PWM strategy on the noise is closely related to the mechanical resonance with vibration mode order zero, while the PWM strategy will be critical only if the dominant cause of the emitted noise is the interaction of the fundamental air-gap field and PWM harmonic

    Encrypted accelerated least squares regression.

    Get PDF
    Information that is stored in an encrypted format is, by definition, usually not amenable to statistical analysis or machine learning methods. In this paper we present detailed analysis of coordinate and accelerated gradient descent algorithms which are capable of fitting least squares and penalised ridge regression models, using data encrypted under a fully homomorphic encryption scheme. Gradient descent is shown to dominate in terms of encrypted computational speed, and theoretical results are proven to give parameter bounds which ensure correctness of decryption. The characteristics of encrypted computation are empirically shown to favour a non-standard acceleration technique. This demonstrates the possibility of approximating conventional statistical regression methods using encrypted data without compromising privacy

    Phase-Sensitive Tetracrystal Pairing-Symmetry Measurements and Broken Time-Reversal Symmetry States of High Tc Superconductors

    Full text link
    A detailed analysis of the symmetric tetracrystal geometry used in phase-sensitive pairing symmetry experiments on high Tc superconductors is carried out for both bulk and surface time-reversal symmetry-breaking states, such as the d+id' and d+is states. The results depend critically on the substrate geometry. In the general case, for the bulk d+id' (or d+is) state, the measured flux quantization should in general not be too different from that obtained in the pure d-wave case, provided |d'| << |d| (or |s| << |d|). However, in one particular high symmetry geometry, the d+id' state gives results that allow it to be distinguished from the pure d and the d + is states. Results are also given for the cases where surface d+is or d+id' states occur at a [110] surface of a bulk d-wave superconductor. Remarkably, in the highest symmetry geometry, a number of the broken time-reversal symmetry states discussed above give flux quantization conditions usually associated with states not having broken time- reversal symmetry.Comment: 6 page

    Fast functional modelling of diode-bridge rectifier using dynamic phasors

    Get PDF
    In this paper, a functional model for diode-bridge rectifiers is developed based on the dynamic phasor concept. The developed model is suitable for accelerated simulation studies of the electric power systems under normal, unbalanced and line faulty conditions. The high accuracy and efficiency of the developed model have been demonstrated by comparison against three-phase time-domain model and against the model employing synchronous space-vector representations. The experimental verification of the developed model is also reported. In addition, an error analysis shows that the error of the developed model is less than 10% at the most severe unbalanced conditions. The prime purpose of the model is for the simulation studies of more-electric aircraft power architectures at a system level; however it can be directly applied for simulation study of any other electrical power system interfacing with uncontrolled diode bridge rectifiers

    Field Driven Pairing State Phase Transition in d_x^2-y^2+id_xy-Wave Superconductors

    Full text link
    Within the framework of the Ginzburg-Landau theory for dx2y2+idxyd_{x^2-y^2}+id_{xy}-wave superconductors, we discuss the pairing state phase transition in the absence of the Zeeman coupling between the Cooper pair orbital angular momentum and the magnetic field. We find that above a temperature TT_{\ast}, the pairing state in a magnetic field is pure dx2y2d_{x^{2}-y^{2}}-wave. However, below TT_{\ast}, the pairing state is dx2y2+idxyd_{x^{2}-y^{2}}+id_{xy}-wave at low fields, and it becomes pure dx2y2d_{x^{2}-y^{2}}-wave at higher fields. Between these pairing states there exists a field driven phase transition . The transition field increases with decreasing temperature. In the field-temperature phase diagram, the phase transition line is obtained theoretically by a combined use of a variational method and the Virial theorem. The analytical result is found to be in good agreement with numerical simulation results of the Gingzburg-Landau equations. The validity of the variational method is discussed. The difference to the case with the Zeeman coupling is discussed, which may be utilized to the detection of the Zeeman coupling.Comment: 5 pages, 2 figures, submitted to PRB Brief Repor

    Magnetic-interference patterns in Josephson junctions with d+is symmetry

    Full text link
    The magnetic interference pattern and the spontaneous flux in unconventional Josephson junctions of superconductors with d+is symmetry are calculated for different reduced junction lengths and the relative factor of the d and s wave components. This is a time reversal broken symmetry state. We study the stability of the fractional vortex and antivortex which are spontaneously formed and examine their evolution as we change the length and the relative factor of d and s wave components. The asymmetry in the field modulated diffraction pattern exists for lengths as long as L=10\lambda_J.Comment: 8 pages, 6 eps files, submitted to PR

    Beyond single-photon localization at the edge of a Photonic Band Gap

    Get PDF
    We study spontaneous emission in an atomic ladder system, with both transitions coupled near-resonantly to the edge of a photonic band gap continuum. The problem is solved through a recently developed technique and leads to the formation of a ``two-photon+atom'' bound state with fractional population trapping in both upper states. In the long-time limit, the atom can be found excited in a superposition of the upper states and a ``direct'' two-photon process coexists with the stepwise one. The sensitivity of the effect to the particular form of the density of states is also explored.Comment: to appear in Physical Review
    corecore