35 research outputs found

    Solar flare prediction using advanced feature extraction, machine learning and feature selection

    Get PDF
    YesNovel machine-learning and feature-selection algorithms have been developed to study: (i) the flare prediction capability of magnetic feature (MF) properties generated by the recently developed Solar Monitor Active Region Tracker (SMART); (ii) SMART's MF properties that are most significantly related to flare occurrence. Spatio-temporal association algorithms are developed to associate MFs with flares from April 1996 to December 2010 in order to differentiate flaring and non-flaring MFs and enable the application of machine learning and feature selection algorithms. A machine-learning algorithm is applied to the associated datasets to determine the flare prediction capability of all 21 SMART MF properties. The prediction performance is assessed using standard forecast verification measures and compared with the prediction measures of one of the industry's standard technologies for flare prediction that is also based on machine learning - Automated Solar Activity Prediction (ASAP). The comparison shows that the combination of SMART MFs with machine learning has the potential to achieve more accurate flare prediction than ASAP. Feature selection algorithms are then applied to determine the MF properties that are most related to flare occurrence. It is found that a reduced set of 6 MF properties can achieve a similar degree of prediction accuracy as the full set of 21 SMART MF properties

    Machine learning-based investigation of the association between CMEs and filaments

    Get PDF
    YesIn this work we study the association between eruptive filaments/prominences and coronal mass ejections (CMEs) using machine learning-based algorithms that analyse the solar data available between January 1996 and December 2001. The Support Vector Machine (SVM) learning algorithm is used for the purpose of knowledge extraction from the association results. The aim is to identify patterns of associations that can be represented using SVM learning rules for the subsequent use in near real-time and reliable CME prediction systems. Timing and location data in the NGDC filament catalogue and the SOHO/LASCO CME catalogue are processed to associate filaments with CMEs. In the previous studies which classified CMEs into gradual and impulsive CMEs, the associations were refined based on CME speed and acceleration. Then the associated pairs were refined manually to increase the accuracy of the training dataset. In the current study, a data- mining system has been created to process and associate filament and CME data, which are arranged in numerical training vectors. Then the data are fed to SVMs to extract the embedded knowledge and provide the learning rules that could have the potential, in the future, to provide automated predictions of CMEs. The features representing the event time (average of the start and end times), duration, type and extent of the filaments are extracted from all the associated and not-associated filaments and converted to a numerical format that is suitable for SVM use. Several validation and verification methods are used on the extracted dataset to determine if CMEs can be predicted solely and efficiently based on the associated filaments. More than 14000 experiments are carried out to optimise the SVM and determine the input features that provide the best performance

    The product of a Petrine circle? A reassessment of the origin and character of 1 Peter

    Get PDF
    © 2002 SAGE PublicationsRecent studies of 1 Peter, especially by John Elliott, have sought to rescue the letter from its assimilation to the Pauline tradition and to establish the view, now widely held, that 1 Peter is the distinctive product of a Petrine circle. After examining the traditions in 1 Peter, both Pauline and non-Pauline, and the names in the letter (Silvanus, Mark and Peter), this essay argues that there is no substantial evidence, either inside or outside the letter, to support the view of 1 Peter as originating from a specifically Petrine group. It is much more plausibly seen as reflecting the consolidation of early Christian traditions in Roman Christianity. Despite the scholarly majority currently in its favour, the view of 1 Peter as the distinctive product of a Petrine tradition from a Petrine circle should therefore be rejected

    Data and code for paper "A gray-box model for a probabilistic estimate of regional ground magnetic perturbations: Enhancing the NOAA operational Geospace model with machine learning"

    No full text
    Simulation results from the NOAA/SWPC Geospace model used in the paper Camporeale et al. (2020) "A gray-box model for a probabilistic estimate of regional ground magnetic perturbations: Enhancing the NOAA operational Geospace model with machine learning" published in J. Geophys. Res. (2020

    A Gray-Box Model for a Probabilistic Estimate of Regional Ground Magnetic Perturbations: Enhancing the NOAA Operational Geospace Model With Machine Learning

    No full text
    We present a novel algorithm that predicts the probability that the time derivative of the horizontal component of the ground magnetic field dB/dt exceeds a specified threshold at a given location. This quantity provides important information that is physically relevant to geomagnetically induced currents (GICs), which are electric currents associated with sudden changes in the Earth's magnetic field due to space weather events. The model follows a “gray-box” approach by combining the output of a physics-based model with machine learning. Specifically, we combine the University of Michigan's Geospace model that is operational at the National Oceanic and Atmospheric Administration (NOAA) Space Weather Prediction Center, with a boosted ensemble of classification trees. We discuss the problem of recalibrating the output of the decision tree to obtain reliable probabilities. The performance of the model is assessed by typical metrics for probabilistic forecasts: Probability of Detection and False Detection, True Skill Statistic, Heidke Skill Score, and Receiver Operating Characteristic curve. We show that the ML-enhanced algorithm consistently improves all the metrics considered
    corecore