5 research outputs found

    Clinical, angiographic, and procedural predictors of angiographic restenosis after sirolimus-eluting stent implantation in complex patients

    Get PDF
    BACKGROUND: The factors associated with the occurrence of restenosis after sirolimus-eluting stent (SES) implantation in complex cases are currently unknown. METHODS AND RESULTS: A cohort of consecutive complex patients treated with SES implantation was selected according to the following criteria: (1) treatment of acute myocardial infarction, (2) treatment of in-stent restenosis, (3) 2.25-mm diameter SES, (4) left main coronary stenting, (5) chronic total occlusion, (6) stented segment >36 mm, and (7) bifurcation stenting. The present study population was composed of 238 patients (441 lesions) for whom 6-month angiographic follow-up data were obtained (70% of eligible patients). Significant clinical, angiographic, and procedural predictors of post-SES restenosis were evaluated. Binary in-segment restenosis was diagnosed in 7.9% of lesions (6.3% in-stent, 0.9% at the proximal edge, 0.7% at the distal edge). The following characteristics were identified as independent multivariate predictors: treatment of in-stent restenosis (OR 4.16, 95% CI 1.63 to 11.01; P<0.01), ostial location (OR 4.84, 95% CI 1.81 to 12.07; P<0.01), diabetes (OR 2.63, 95% CI 1.14 to 6.31; P=0.02), total stented length (per 10-mm increase; OR 1.42, 95% CI 1.21 to 1.68; P<0.01), reference diameter (per 1.0-mm increase; OR 0.46, 95% CI 0.24 to 0.87; P=0.03), and left anterior descending artery (OR 0.30, 95% CI 0.10 to 0.69; P<0.01). CONCLUSIONS: Angiographic restenosis after SES implantation in complex patients is an infrequent event, occurring mainly in association with lesion-based characteristics and diabetes mellitus

    Multi-messenger Observations of a Binary Neutron Star Merger

    Full text link
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore